CONTENTS
VOLUME 235 NUMBER 3

REVIEWS
Mechanical, hormonal and metabolic influences on blood vessels, blood flow and bone R77–R100
Rhonda D Prisby
AIP and the somatostatin system in pituitary tumours R101–R116
Alejandro Ibáñez-Costa & Márta Korbonits

ISSN 0022-0795 (PRINT)
ISSN 1479-6805 (ONLINE)
The Society for Endocrinology is one of the world’s leading authorities on hormones. Established in 1946, the Society’s aims are to support the advancement of scientific and clinical knowledge and increase research in endocrinology for the public benefit. It also plays a vital role in promoting and supporting endocrinology worldwide.

The Society for Endocrinology offers a range of journals including Journal of Endocrinology, Journal of Molecular Endocrinology, Endocrine-Related Cancer, Endocrine Connections (open access) and Clinical Endocrinology.

For more information visit www.endocrinology.org

COVER ART COMPETITION

Readers are invited to submit their endocrinology images for entry into the Journal of Endocrinology cover art competition. Winners will be selected by the Editor-in-Chief and will have their imagery featured on the cover of an issue of Journal of Endocrinology, both in print and online. Winners will be cited in the journal and will receive a professionally printed copy of the journal cover featuring their scientific image.

To enter the competition please email your images to joe@endocrinology.org accompanied with a short caption of 25-30 words explaining what the image depicts, its magnification and who should be acknowledged for its production. Images should be of high quality and resolution of at least 300 dpi at the final published size 220 mm (W) × 100 mm (H).

By submitting an image you warrant that you own the copyright and agree that images may be used in promotional material. Images not selected for use may still be used by the Society for Endocrinology and Bioscientifica for promotional purposes.

THIS ISSUE’S COVER

The images depict some key molecular determinants of CRH signaling in the hypothalamus of laboratory rodents and humans. In mice (left), secretagogin co-exists with neither oxytocin nor vasopressin. In contrast, a subset of vasopressin+ and oxytocin+ neurons can co-express secretagogin in rats (centre) and humans (right) (red, secretagogin; green, vasopressin; blue, oxytocin). From Romanov et al. 232 R161–R172.

Credit: R A Romanov, T Harkany (Medical University of Vienna, Austria), A Alpár (Semmelweis University, Budapest, Hungary), T Hökfelt (Karolinska Institutet, Sweden)