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Abstract

Throughout the last decade, significant developments in cellular, molecular and mouse 

models have revealed major endocrine functions of the skeleton. More recent studies 

have evolved the interplay between bone-specific hormones, the skeleton, marrow 

adipose tissue, muscle and the brain. This review focuses on literature from the last 

decade, addressing the endocrine regulation of global energy metabolism via the 

skeleton. In addition, we will highlight several recent studies that further our knowledge 

of new endocrine functions of some organs; explore remaining unanswered questions; 

and, finally, we will discuss future directions for this more complex era of bone 

biology research.

Introduction

Bone has long been regarded as an organised collection of 
inert calcified structures that facilitate the motility of land 
animals. The skeleton’s mass and composition provides 
vital organ protection, a niche for haematopoiesis and 
allows for weight-bearing motion (Guntur & Rosen 
2012, Oldknow  et  al. 2015). To facilitate these classical 
functional roles, and to maintain bone integrity, there 
is a continuous homeostatic adjustment of the skeletal 
architecture and composition. Central to this adjustment 
is the highly regulated interplay of two distinct bone 
cell types, the osteoblast and the osteoclast, which have 
opposing functions (Crockett et al. 2011).

Osteoblasts comprise 5% of all bone cells and facilitate 
the formation of bone (Florencio-Silva  et  al. 2015). 
Mature osteoblasts synthesise and release type 1 collagen, 
which forms the majority (85–90%) of the organic 
matrix of the bone (Karsenty  et  al. 2009). Osteoblasts 
that become embedded in the bone matrix undergo 
terminal differentiation, giving rise to osteocytes –  
the most abundant skeletal cell type (90% of total bone 

cells) (Dallas & Bonewald 2010). These immobilised cells 
are ideally suited to perform the function of translating 
mechanical strain into biochemical signals in order to 
regulate bone composition (Sugiyama et al. 2010) (Fig. 1). 
The bone itself is a dynamic organ that is constantly being 
remodelled. This is possible due to the unique function of 
osteoclasts, which mediate destruction (resorption) of the 
bone tissue in which they reside (Holtrop & King 1977). 
The biphasic action of osteoblasts and osteoclasts enables 
bone modelling and remodelling. Bone modelling occurs 
throughout the lifespan, allowing the bone to adapt 
altered stresses and strains put on it (e.g. the tennis players 
serving arm), whereas bone remodelling (maintenance) 
occurs when the resorbed bone is completely replaced 
by new bone (Hadjidakis & Androulakis 2006). The 
regenerative process of a structure that contributes to 
such a large proportion of the body mass (approximately 
15% in men and 10% in women) requires an abundance 
of proteins to be synthesised and secreted. It is therefore 
plausible that a high energetic cost is associated with 
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these diverse skeletal functions (Vaananen  et  al. 2000, 
Karsenty & Ferron 2012).

From an evolutionary perspective, bones likely 
represent a strongly selected survival factor that permitted 
enhanced movement to allow scavenging, survive injury 
and therefore the survival of the organism. However, it 
is now clear that part of the selection process for bones 
involves its integral role in the endocrine control of whole-
body energy metabolism (Guntur & Rosen 2013). One 
example of the poorly understood metabolic functions of 
the skeleton is the presence of adipose tissue within the 
bone marrow – referred to as marrow adipose tissue (MAT). 
Accounting for approximately 10% of the total fat mass in 
healthy humans, the function of MAT and its association 
with bone-specific cells, namely osteoblasts, osteocytes 
and osteoclasts, remains unknown. Here, we focus on 
recent discoveries that explain the endocrine functions 

and molecular mechanisms linking bone (inclusive of 
MAT and muscle) and energy expenditure.

Bone as an endocrine organ

In addition to its structural role, bone is a well-
recognised target for endocrine function. This is 
exemplified by the orchestrated inter-organ regulation 
of phosphate, which involves the parathyroid glands, 
kidneys and intestines facilitating homeostatic 
maintenance of phosphate, in the mineralisation of 
bone extracellular matrix (Karsenty & Olson 2016). 
Implicit to the theory of homeostatic control is 
reciprocal crosstalk between the bone and these organs 
(Ramsay & Woods 2014). Indeed, the skeleton acts not 
only as an endocrine target but also as an endocrine 

Figure 1
Bone anatomy and composition. Bone is organised into two distinct structures, cortical and trabecular. Cortical bone accounts for 80% of the skeletal 
mass and is highly organised, consisting of concentric lamellae arranged in Haversian systems. Trabecular, or ‘spongy’ bone, possesses ten times the 
surface area of cortical bone, accounting for 20% of the bone mass and enabling bone to withstand compressive and tensile forces. The bone contains 
osteoblasts, osteocytes and osteoclasts. Osteoblasts constitute approximately 5% of all bone cells and are the specialised ‘bone-building’ cells, 
originating from pluripotent mesenchymal stem cells (MSCs). Following matrix deposition and mineralisation, osteoblasts either remain on the surface 
of the bone as inactive lining cells; undergo apoptosis or become entombed by their secreted matrix and differentiate into osteocytes. Osteocytes reside 
within the mineralised bone matrix and are organised in functional syncytia collectively referred to as the osteocytic lacunar–canalicular system. 
Osteoclasts are derived from the haematopoietic lineage and are responsible for the resorption of mineralised bone and, in partnership with 
osteoblasts, regulate remodelling of bone tissue. The bone marrow further provides the haematopoietic niche, which supports the survival, self-renewal 
and differentiation of the haematopoietic stem cell (HSC). HSCs are capable of differentiation into two cell types: firstly, the common myeloid 
progenitor, which further differentiates to give rise to a number of blood cells including platelets, eosinophils, basophils, neutrophils, monocytes and 
erythrocytes; and secondly, the common lymphoid progenitor, which further differentiates to form B- and T-cells of the immune system. Within the bone 
marrow cavity, maintenance of the haematopoietic niche is orchestrated through vascular niches, which balance quiescence of HSC, proliferation and 
also regeneration following injury to the bone marrow. This regulation of HSC homeostasis involves intrinsic and extrinsic signals from the niche, 
including bound or secreted molecules, contractile force or even temperature. Haematological malignancies, or chemotherapy/radiation as a treatment 
for the disease, cause a limit to the regenerative and differentiation potentials of HCSs, causing a functional deficit (further discussed within text – see 
‘Disease and bone’ section).
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organ with possible roles in the hormonal modulation 
of systemic energy homeostasis.

Osteocalcin

Also known as BGP (bone Gla protein), osteocalcin (OCN) 
is the most abundant osteoblast-specific non-collagenous 
protein. OCN is initially synthesised by the osteoblast 
as a pre–pro-molecule and is commonly used as a serum 
marker of bone formation (Brown  et  al. 1984). OCN 
exists in the general circulation in fully carboxylated, 
partially carboxylated and completely uncarboxylated 
forms (Plantalech  et  al. 1991, Cairns & Price 1994, 
Vergnaud et al. 1997, Schilling et al. 2005). Uncarboxylated 
OCN is formed when carboxylated OCN in the bone 
extracellular matrix is decarboxylated by the acidic pH 
(4.5) in osteoclastic resorption lacunae. Uncarboxylated 
OCN promotes β-cell proliferation, insulin secretion, 
peripheral insulin sensitivity and energy expenditure 
and impacts memory and male fertility (Lee  et al. 2007, 
Oury et al. 2011, 2013). Recently a role for OCN in muscle 
function has been demonstrated. OCN levels doubled 
during endurance exercise in young adult wild-type (WT) 
mice, decreased significantly prior to or at mid-life, and 
OCN failed to increase during exercise in older mice. 
Importantly equivalent decreases in circulating OCN levels 
were observed in female rhesus monkeys and humans 
(Mera  et  al. 2016a). OCN administration was sufficient 
to reverse the age-induced decrease in exercise capacity 
in mice. Specifically, in 15-month-old mice, injections of 
OCN raised circulating OCN levels more than 4-fold and 
allowed these mice to run for the same time and distance 
as 3-month-old mice. Moreover, undercarboxylated 
OCN promoted uptake and subsequent catabolism of 
glucose and fatty acids in myofibres (Mera et al. 2016a,b). 
These nutrients, in turn, facilitate physical adaptation 
to exercise, whilst concurrently promoting the exercise-
induced release of interleukin-6 (IL-6) from skeletal 
muscle. IL-6 further drives the production of bioactive 
OCN, supporting the hypothesis of a bone–muscle feed-
forward axis. Thus, in addition to its postulated role in 
glucose and weight homeostasis (Oldknow  et  al. 2015), 
OCN further contributes to the regulation of energy 
metabolism, through effects on skeletal muscle. This 
supports the hypothesis that insulin signalling mediates 
the link between bone remodelling, and whole-body 
energy expenditure, and points towards a key role for the 
osteoblast in this relationship (Huesa et al. 2014).

NPP1 and PHOSPHO1

In order to further increase our knowledge of the 
skeletons’ endocrine links with energy expenditure, 
the role of bone mineralisation factors such as 
phosphoethanolamine/phosphocholine phosphatase 
1 (PHOSPHO1) and ectonucleotide pyrophosphatase/
phosphodiesterase 1 (NPP1) have been addressed. 
NPP1, encoded by the Enpp1 gene in mice, is highly 
abundant in the plasma membrane (external side) 
and mineral-depositing matrix vesicles of the 
osteoblast (Mackenzie  et  al. 2012). NPP1 generates 
inorganic pyrophosphate (PPi) through the 
hydrolysis of nucleotides (ATP). PPi potently inhibits 
hydroxyapatite crystal formation in tissues capable 
of mineralisation (bone and soft tissue) and acts as a 
precursor for inorganic phosphate (Pi) (Buckley  et  al. 
1990, Mackenzie  et  al. 2012). NPP1 regulates glucose 
homeostasis via suppression of insulin receptor 
signalling in various tissues, including adipose, bone 
and muscle (Maddux et al. 1995, Mackenzie et al. 2012). 
NPP1 binds to and inhibits insulin-induced receptor 
conformational changes and is a potential pathogenic 
contributor to insulin resistance (Huesa et al. 2014). This 
concept is supported by the phenotype of Enpp1 ablated 
mice, which display improved glucose homeostasis and 
resist obesity-associated dysfunction in response to 
high-fat diet feeding (Huesa  et  al. 2014). Thus, NPP1 
plays multifaceted roles in normal physiology, including 
the regulation of calcium and phosphate homeostasis, 
inhibition of soft tissue mineralisation, maintenance 
of skeletal function and structure regulation of insulin 
signalling and energy homeostasis.

The bone-specific phosphatase PHOSPHO1 
is a member of the large haloacid dehalogenase 
(HAD) superfamily of Mg2+-dependent hydrolases 
(Roberts  et  al. 2004). PHOSPHO1 is active inside the 
osteoblast-derived matrix vesicle, where it scavenges 
Pi from matrix vesicle membrane phospholipids to 
promote intravascular hydroxyapatite deposition. 
Recent studies have identified novel roles of this 
bone-derived factor in energy homeostasis. Mice with 
Phospho1 ablation exhibit a decreased body size and 
protection against both obesity and diabetes, regardless 
of carboxylation status of OCN (Oldknow  et al. 2013, 
Chambers  et  al. 2015, Dayeh  et  al. 2016, Sayols-
Baixeras  et  al. 2016); however, the mechanisms 
conferring this metabolic-protective phenotype remain 
to be determined.

http://dx.doi.org/10.1530/JOE-17-0147
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PPARγ

The transcription factor PPARγ is critical for 
differentiation of adipocytes and maintenance of the 
adipogenic phenotype. This is achieved via directing 
lineage commitment of marrow mesenchymal stem cells 
from an osteoblast-fate and towards that of adipocytes 
(Lecka-Czernik 2010). PPARγ insufficiency in mice results 
in decreased adipose tissue and increased bone mass via 
inhibition of osteoclastogenesis and bone resorption 
(Akune et al. 2004). It remains unclear whether increased 
bone mass is a result of altered lineage commitment of 
bone marrow stem cells or an indirect effect through 
the modified function of adipose tissue. Alternatively, 
both direct and indirect mechanisms could account for 
the bone mass phenotype: PPARγ disruption in adipose 
tissue (i.e. lipodystrophic disease) resulted in increased 
osteoblast activity and concomitant increased bone 
formation. The mechanisms by which PPARγ regulates 
bone is not clear as mouse models of bone-specific PPARγ 
conditional knockouts have not been investigated to 
date (Cao et al. 2015). To add further complexity, PPARγ 
deletion in other tissues causes profound effects on bone, 
further complicating investigative efforts. Osteoblast-
selective PPARγ deletion in mice (using PPAR(fl/fl):Col3.6-
Cre) completely abolished adipogenesis, with the bone 
phenotype of increased osteoblastogenesis reflected 
in primary bone marrow culture and in isolated bone 
marrow stem cells. PPARγ is situated at the bifurcation of 
lineage commitment of bone and adipocytes, suggesting 
that therapeutic manipulation may help to manage 
obesity-related conditions and orthopaedic health (Lecka-
Czernik 2010). For example, rosiglitazone (an insulin-
sensitising thiazolidinedione) activates PPARγ and 
effectively treats T2DM by promoting insulin sensitivity. 
However, rosiglitazone use comes at a cost of increased 
fracture risk consistent with increased adipogenesis 
and reduced osteoblastogenesis. With a promise for 
the effective management of T2DM, further work must 
continue to determine and thus avoid, any negative 
bone phenotype associated with thiazolidinedione use 
(Fukunaga et al. 2015).

Unexplored candidates

In light of the newly identified function of bone 
in energy metabolism, it is of interest to review the 
evidence for substrate utilisation in bone cells types. 
Overexpression of the glucose transporter Glut1 in 
osteoblasts enhances osteoblast differentiation and 

bone formation (Wei et al. 2015). Assessment of glucose 
utilisation by the skeleton in vivo, using uptake of 
positron-emitting 18F-fluorodeoxyglucose ([18F]-FDG), 
revealed greater glucose uptake in bone than that in 
classical glucose storage and utilisation organs such as the 
liver, muscle and white adipose tissue (WAT) (Zoch et al. 
2016). Furthermore, skeletal [18F]-FDG uptake was greater 
in young than in older mice, which may be due to the 
rapid bone formation in young mice. Intriguingly, 
insulin administration significantly increased skeletal 
accumulation of [18F]-FDG, whilst insulin receptor-
deficient and obese mice had reduced uptake (Zoch et al. 
2016). These findings suggest that the skeleton is a 
preferential and significant site of glucose uptake that is 
regulated by insulin and global metabolism.

Bone and adipose tissue

In times of a positive energy balance (i.e. energy 
intake > energy expenditure), WAT stores excess energy 
as triacylglycerol (TAG) and releases fatty acids (FA) and 
glycerol to be used for β-oxidation or gluconeogenesis 
during negative energy balance, respectively (Cahill 
2006, Rosen & Spiegelman 2014). In addition to the role 
of adipose tissue in energy storage and release, adipose 
tissue also provides vital structural/mechanical protection 
for organs (e.g. the eye fat, pad, toes and heel) (Rosen & 
Spiegelman 2014) and offers a critical thermoprotective 
layer against low ambient temperatures.

Discovery of adipose-derived circulating factors such 
as adipsin, TNF-α, leptin and adiponectin (Badman & Flier 
2007, Rosen & Spiegelman 2014) defined adipose tissue 
as a bona fide endocrine organ. Through the release of 
these ‘adipokines’, WAT can exert diverse systemic effects, 
not only on energy homeostasis but also on other aspects 
of physiology such as blood pressure, immune function 
and fertility (Michalakis  et  al. 2013). Thus, despite its 
association with metabolic diseases, WAT performs many 
essential physiological functions. Indeed, in the absence, 
and/or the redistribution of adipose tissue (lipodystrophy), 
patients develop insulin resistance, hyperglycemia, 
hypertriglyceridemia, hepatic steatosis and polycystic 
ovary syndrome underscoring the importance of adipose 
formation for normal physiological function (Cortes & 
Fernandez-Galilea 2015).

In contrast to white adipocytes, brown adipose 
tissue (BAT) is specialised for heat generation by non-
shivering thermogenesis. Brown adipocytes, unlike 
white adipocytes, have an enrichment of mitochondria 
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that express uncoupling protein-1 (UCP-1). This protein 
uncouples the respiratory chain, allowing protons to pass 
from the inner membrane space to the mitochondrial 
matrix without passing through ATP synthase. This causes 
a futile cycle: oxygen is consumed to pump protons, but 
the resulting chemiosmotic gradient generates no ATP 
and instead results in the dissipation of energy as heat 
(Nubel & Ricquier 2006). BAT is developmentally distinct 
to WAT, deriving from a distinct lineage that is shared with 
skeletal muscle (Rosen & Spiegelman 2014). BAT activity 
is relatively high in small mammals and in newborn 
humans, whereas BAT in adult humans is less active 
and is situated deep within the neck and supraclavicular 
region. Nevertheless, BAT in adult humans remains 
cold responsive, as exemplified in Scandinavian workers 
exposed to chronic cold (Huttunen et al. 1981). Similarly, 
prolonged cold exposure in rodents has shown to alter 
WAT cells by developing a brown fat-like morphology. 
These cells have been named ‘beige’ adipocytes, with a 
gene expression pattern overlapping but distinct to that of 
classical BAT (Wu et al. 2012, Rosen & Spiegelman 2014).

Whilst these adipose subtypes have received extensive 
research focus, the MAT within the marrow cavity of the 
skeleton has been largely ignored. Concurrent with the 
emergence of the field of skeletal energy homeostasis, 
the research into the form and function of MAT has 
begun to expand. Postnatally, MAT forms at distal 
skeletal sites, including the tailbone, hands and feet in 
mice and humans (Scheller & Rosen 2014). Throughout 
life, MAT (yellow marrow) continues to form in areas of 
the haematopoietic marrow (red marrow) until almost 
the entirety of the appendicular skeleton is converted 
into yellow marrow by the age of 20 years in humans 
(Moerman  et  al. 2004); however, red marrow persists in 
the axial skeleton, only declining with advanced age 
(Justesen et al. 2001). Marrow adipocytes are derived from 
a distinctive progenitor cell that expresses osterix, Prrx1, 
LepR and Gremlin1 (Chen  et  al. 2014). Thus, marrow 
adipocytes may be highly related to osteoblast precursors 
and play a role in bone maintenance and skeletal energy 
(Liu et al. 2013, Mizoguchi et al. 2014).

MAT consists of two subtypes: constitutive MAT 
(cMAT) and regulated MAT (rMAT). cMAT is found 
predominantly in the distal skeleton, giving the bone 
marrow a yellow appearance (Scheller  et  al. 2015). In 
contrast, rMAT develops much later than cMAT, in the 
proximal skeleton, hip, ribs and lumbar/thoracic vertebrae 
postnatally and consists of adipocytes interspersed 
with red marrow. rMAT is not necessarily formed in a 
normal developmental/physiological manner, instead, 

rMAT seems to reflect adverse stimuli or disease states 
(Pichardo et al. 2007, Rosen & Spiegelman 2014).

Many questions remain regarding the formation 
and function of MAT. In animal models, MAT increases 
in response to the contrasting interventions of calorie 
restriction (CR) and high-fat diet feeding (Devlin  et  al. 
2010, Cawthorn et al. 2014, Doucette et al. 2015). Similarly, 
humans with anorexia nervosa show MAT expansion 
(Misra & Klibanski 2013). Thus, does MAT, like WAT, 
play a role in regulating systemic energy homeostasis? 
Consistent with this possibility, is the suggestion that 
MAT may function as an energy reservoir for ectopic 
lipid, protecting skeletal osteoblasts from lipotoxicity 
(Gunaratnam et al. 2014), as well as secreting FA, cytokines 
(IL-6/1β and TNF-α) (Caers  et  al. 2007) and adipokines 
(leptin and adiponectin) (Rosen et al. 2009, Cawthorn et al. 
2014). Moreover, there is often a relationship between 
bone loss and MAT expansion, which can coincide during 
ageing, osteoporosis, elevated glucocorticoids and cancer 
treatments. This further suggests a close relationship 
between bone-specific cells and marrow adipocytes 
(Moerman et al. 2004, Georgiou et al. 2012).

The diseased state

The skeleton and associated bone-secreted factors provide 
a complex endocrine system that is finely orchestrated 
with other organs including the gut, brain, liver and 
kidney to ensure homeostatic balance and health. 
Indeed, bone-associated proteins act as a bridge to link 
complex pathways that bring together bone turnover, 
mineralisation, mineral and metabolic homeostasis. 
When these pathways become dysregulated, affected 
individuals may suffer from bone, muscle and adipose 
pathology (Fig. 2).

Multiple myeloma and myeloma bone disease

In the instance of multiple myeloma, affected individuals 
with myeloma bone disease (MBD) may experience altered 
bone metabolism, as a consequence of myeloma cells 
colonising the bone marrow (Walker et al. 2014, Xi et al. 
2016). The pathophysiology of MBD is characterised by 
an imbalance in osteoblast and osteoclast activity. The 
resultant disruption of bone turnover is due to two distinct 
mechanisms. Firstly, engrafted myeloma cells are capable 
of secreting osteoclast-activating factors including, but 
not limited to, IL-6, IL-β, TNFα and parathyroid hormone-
related protein. Secondly, these engrafted cells can also 

http://dx.doi.org/10.1530/JOE-17-0147
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interact with bone marrow microenvironment-regulating 
cells to further encourage secretion of osteoclast-
activating factors (Roodman 2010, Terpos  et  al. 2014).  
By orchestrating this two-pronged ‘attack’, myeloma cells 
increase osteoclastic bone resorption. Further, several 
molecular mechanisms have been attributed to promoting 
osteoblastic reduction within MBD: Wnt-antagonists 
Dickkopf-1 (DKK1), runt-related transcription factor 2 
(RUNX2), secreted frizzled related protein-2 (sFRP-2), 
transforming growth factor-beta (TGF-β), heparanase and 
hepatocyte growth factor (HGF) (Xi et al. 2016).

Such mechanisms, which compromise the normal 
physiological bone environment, are likely linked to 
energetic costs and wider metabolic consequences to 
the individual. Indeed, energy is expended upon the 
synthesis and secretion of an abundance of proteins 
required in the bone destruction process orchestrated 
by osteoclasts. Furthermore, in advanced disease states, 
lytic regions co-localise with elevated osteoclast activity 
and depressed osteoblastic activity. In accordance, 
the greater degree of bone acidification in osteoclastic 
resorption lacunae provides the conditions required to 
liberate the hormonally active form of OCN from the 
bone matrix via decarboxylation. An inverse correlation 
of serum decarboxylated OCN levels and the severity of 

MBD are reported in the literature (Bataille  et  al. 1990). 
Furthermore, hypercalcaemia is present at the site of 
bone lesions due to increased osteoclastic activity. This 
increased bone endocrine function represents changes 
to normal bone homeostasis and wider systemic 
and metabolic effects associated with the previously 
discussed roles of decarboxylated circulating OCN (i.e. 
increased insulin sensitivity, increased pancreatic β-cell 
proliferation, enhanced adipocyte secretion and reduced 
insulin resistance; Fig. 3).

Improved understanding of the pathogenesis of MBD 
has led to the identification of novel therapeutic targets. 
DKK1 is a key regulatory factor in the normal development 
of bone in adulthood, acting to inhibit osteoblastogenesis 
and promote differentiation of mesenchymal stem cells 
towards adipocytes by suppressing Wnt/beta-catenin 
signalling. It can be hypothesised that the associated 
endocrine function of the increased MAT serves to 
propagate myelomagenesis and tumour growth, with 
elevated adipocyte numbers giving secretion of free fatty 
acids, signalling molecules (e.g. leptin, adiponectin) 
and myeloma-supportive adipokines (e.g. IL-6, TNFα). A 
recent study revealed that blocking of DKK1 activity (or, 
alternatively, the addition of DKK1 antibody) resulted in 
a decrease of osteolytic bone disease, with a restoration 

Figure 2
Regulators of bone volume, muscle mass, subcutaneous and marrow adipose tissue. (Arrow key: Red solid – increased; green solid – decreased.) 
Schematic representation of the key regulators of bone volume, muscle mass, subcutaneous and marrow adipose tissue. It is interesting to highlight that 
both calorie restriction and glucocorticoids result in the loss of adipose tissue, muscle and bone (discussed further in the text).

http://dx.doi.org/10.1530/JOE-17-0147
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of increased osteoblast activity and decreased myeloma 
tumour burden (Qiang  et  al. 2008). The bi-directional 
signalling of myeloma cells and bone cells requires 
further investigation to determine the impacts of these 
interactions on bone homeostasis and tumour growth. 
Despite accelerated interest in the field, to date MBD (and 
multiple myeloma) remain incurable: it is imperative 
that future work is conducted to further elucidate the 
molecular mechanisms underlying the disruption of the 
bone marrow microenvironment within the framework of 
this complex and multifactorial disease such that novel 

drugs may become a feasible reality for targeted therapy 
for the MBD patient.

Diabetes

Globally, 642 million adults are predicted to have 
diabetes by 2040 (Atlas 2016). The diabetic complication 
of fragility fractures is of increasing importance, 
representing an undeniably large burden for health care 
systems of the world. The burden of diabetic fracture can 
also be considered at the individual level: fracture healing 

Figure 3
Integrative model of the regulation of the new endocrine functions bone, muscle and marrow adipose tissue. (Arrow key: black solid – accepted; black 
dashed – speculative; red – inhibitory.) Insulin secretion from the pancreas acts upon the insulin receptor on the osteoblast, which subsequently inhibits 
Forkhead box protein O 1 (FoxO1) expression and suppresses twist basic helix-loop-helix transcription factor 2 (Twist2), favouring bone resorption via 
osteoclast activation. The adipocyte-derived hormone leptin has been shown to have two opposing roles, acting centrally to inhibit bone mass accrual 
and peripherally, increasing osteoblast number and activity. The acidic pH generated in the resorption lacunae decarboxylates OCN on its three glutamic 
acid residues (GLU13, GLU17 and GLU20), which enable it to be released from the bone matrix into the general circulation. Once circulating, OCN can 
regulate global energy metabolism via the stimulation of insulin secretion and β-cell proliferation in the pancreas; energy expenditure by muscle and 
insulin sensitivity in adipose tissue, muscle and liver. Furthermore, OCN favours hippocampal development in offspring; brain function in adults and male 
fertility by stimulating testosterone synthesis in Leydig cells of the testis. A bone–muscle feed-forward axis exists where systemic undercarboxylated OCN 
signals to myofibres favouring uptake and subsequent catabolism of glucose and fatty acids, facilitating physical adaptation to exercise and release of 
exercise-induced IL-6. The latter drives the production of bioactive OCN. Adiponectin release from bone marrow adipose tissue may act to indirectly 
increase bioactive OCN by suppressing osteoblast proliferation, potentially favouring osteoclast activity. Another possibility is that excess local OCN 
production is responsible, at least in part, for elevated adiponectin production from MAT; however, this remains unclear.
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necessitates three energetically costly processes including 
inflammation, repair and remodelling (Regard et al. 2012). 
It is conceivable that the associated energetic cost of this 
exerts a direct effect on global energy metabolism of the 
affected individual, although to date, no established 
link of fracture burden and energy metabolism has 
been acknowledged.

In type 1 diabetes mellitus (T1DM), bone mineral 
density (BMD) – the gold standard measure for the 
determination of fracture risk – is decreased, a product 
of decreased osteoblastogenesis and increased osteoblast 
death (McCabe 2007, Coe  et  al. 2011). Conversely, 
BMD is increased in type 2 DM (T2DM); yet, both 
T1DM and T2DM patients have a significantly higher 
fracture risk as a complication of diabetic bone disease, 
compared to the general public (Janghorbani  et  al. 
2006). This indicates a wider role of under-appreciated 
and undefined pathophysiological mechanisms 
responsible for diabetes-associated bone fragility and 
highlights the shortcomings of our modern day fracture 
risk assessment techniques. It is likely that many 
T2DM patients of high fracture risk go unidentified 
prior to fracture incidence, owing to the higher BMD 
associated with this class of diabetes. It remains 
possible that the physiological paradox of elevated 
BMD coinciding with increased fracture risk could well 
be explained by the higher prevalence of fall-associated 
trauma amongst diabetic patients (Gregg  et  al. 2002, 
Schwartz  et  al. 2002). However, it is likely that the 
pathophysiological mechanisms that underlie bone 
fragility in diabetic patients are of greater complexity 
than initially anticipated: even when studies include 
falls and associated risk factors, the association between 
diabetes and increased fractures remains inconclusively 
explained (Schwartz et al. 2002).

Suggested mechanisms of diabetic fractures include 
complications with hyperglycaemia, oxidative stress and 
glycation end-product accumulation, which compromis 
the properties of collagen – the most abundant of the 
bone proteins (Napoli et al. 2016). Furthermore, diabetes 
is associated with declining renal function, associated 
with lower BMD, and microvascular complications, which 
limit blood flow to the bone. Consequently, bones have 
decreased exposure to circulating bioactive hormones, 
including OCN, which may further contribute to skeletal 
fragility. These factors indicate there is a poorer quality of 
the bone such that there is increased fracture risk for both 
T1DM and T2DM, despite differences in BMD between 
these cohorts.

Obesity and anorexia

Our knowledge of the pathogenicity of T2DM and bone 
disease is further complicated by the frequent overlap of 
T2DM with obesity. Indeed, a long-held concept is that 
obesity protects against fracture risk by increasing loading 
of the skeleton. The increased mechanical strain in 
obesity is sensed and translated by osteocytes, increased 
BMD. However, whilst seemingly logical, this concept has 
recently been debunked: obesity itself is an independent 
risk for fracture owing to compromised quality of bones, 
despite non-compromised BMD (Johansson  et  al. 2014, 
Palermo  et  al. 2016). This confounds our attempts to 
understand diabetes-specific endocrine mechanisms 
underlying diabetic-associated skeletal fragility.

Obesity further manifests bone disease through 
mechanisms affecting metabolism. As both marrow 
adipocytes and osteoblasts likely derive from a common 
progenitor within the BM stroma (Chen et al. 2014) and 
that obesity promotes the differentiation of adipocytes in 
WAT, it is possible that obesity may also stimulate marrow 
adipogenesis at the cost of osteoblast differentiation. This 
would result in the altered quality of the obese patient's 
bones, even if elevated mechanical strain may be giving 
rise to increased BMD.

In addition, obesity is often associated with chronic 
inflammation. Obese individuals have an altered 
hormonal milieu and higher circulating levels of pro-
inflammatory cytokines. Such cytokines may serve to 
modify the activity of the osteoclast receptor activator of 
NF-κB (RANK)/RANK-Ligand (RANKL), thereby increasing 
osteoclastogenesis and bone resorption. In addition, 
the bioavailable 25 hydroxyvitamin D3 is decreased 
in obese individuals, likely due to storage within the 
excess adipose tissue, which compromises bone mineral 
content (Cândido & Bressan 2014). Amongst the obese 
population, there is also an increase in circulating 
bone-anabolic hormones. This includes higher levels of 
pancreatic hormones (insulin, amylin and preptin) and 
adipose-derived factors including aromatase, leptin and 
resistin (Karra & Batterham 2010).

On the other end of the weight spectrum, anorexia 
patients also exhibit a disease-bone phenotype, with 
greater fracture propensity. This serious psychiatric 
disorder manifests in emaciation of the self-starved 
individual (Dede  et  al. 2014). Alongside serious 
weight deficit, the anorexic patient further suffers 
from bone structural deficits, such that the skeletal 
mechanical capability is impaired. These individuals 
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experience decreased cortical radius thickness and 
wider endocortical diameters (Dede  et  al. 2014). Such 
microarchitectural alterations increase susceptibility to 
bone fragility, regardless of documented BMD values. 
These structural defects persist even after recovery 
from the disease (Dede  et  al. 2014). In a similar 
fashion to the long-suffering anorexia patient, low-
calorie intake during early stages of life (i.e. during 
skeletal development) results in decreased bone mass, 
increased fracture risk and osteoporosis in adulthood 
(Devlin  et  al. 2010). These defects are most harmful 
during adolescence when bone accrual is paramount 
for the development of peak bone mass. As previously 
discussed, anorexia (and caloric restriction) is associated 
with increased MAT (Fazeli et al. 2013, Scheller & Rosen 
2014). To date, over 10 distinct animal studies have 
found increased MAT during states of CR or starvation, 
such that MAT significantly increases in the proximal 
femur and tibia of CR mice in comparison to the 
control mice (Devlin et al. 2010, Cawthorn et al. 2014). 
Furthermore, CR in young mice decreased serum leptin 
and IGF1 levels. Despite elevated bone resorption 
and decreased bone formation and percentage body 
fat, MAT was significantly increased in CR mice 
(Devlin  et  al. 2010), suggesting that increased MAT is 
associated with impaired skeletal maturity; however, 
CR in rabbits causes bone loss without MAT expansion, 
suggesting that the latter is not necessary for the 
former (Cawthorn et al. 2016). In addition to decreased 
circulating levels of leptin and IGF1 during CR, decreased 
circulating oestradiol and increased circulating FGF21, 
ghrelin and cortisol/corticosterone levels have also 
been linked to elevated BM adiposity; thus, each 
of these factors has been suggested as mediators of 
MAT expansion during CR (Thompson  et  al. 2004, 
Syed  et  al. 2008, Devlin  et  al. 2010, Shen  et  al. 2012, 
Cawthorn  et  al. 2014, Suchacki  et  al. 2016, Sulston & 
Cawthorn 2016). These studies highlight the possibility 
that MAT may be responsible for endocrine signalling 
such that the propensity of fracture for the anorexic 
sufferer is increased. One key question is whether the 
highly energetic cost of fracture repair, coupled with 
emaciated status of the anorexic individual, promotes 
the differentiation of skeletal stem/stromal cells towards 
MAT to act as an ‘emergency storage’ of adipocytes, and 
thus energy, to facilitate survival during self-starvation? 
If so, this likely comes at the expense of osteoblasts 
derived from the same skeletal progenitor, thereby 
further potentiating bone fragility in anorexic patients.

Pancreatic disease

Given the recently acknowledged bone-pancreas loop 
in the regulation of glucose metabolism by insulin 
(Faienza et al. 2015), it is possible that pancreatic diseases 
such as pancreatitis or pancreatic cancer may result in 
altered bone homeostasis and/or endocrine function. 
Studies both in vitro and in vivo have revealed the 
osteogenic nature of insulin, promoting cell proliferation, 
collagen synthesis and uptake of glucose. Insulin acts on 
bone by binding to the insulin receptor situated on the 
osteoblast. Recent studies (Ferron et al. 2010, Fulzele et al. 
2010) have revealed that osteoblast-specific insulin 
receptor knockout results in decreased osteoblast numbers 
and bone formation, coupled with reduced OCN activity. 
Patients with pancreatitis suffer from the loss of exocrine 
and endocrine functions via inflammatory processes that 
cause the destruction of the pancreas. Concomitantly, a 
loss of islet cells (α and β cells) results in a decrease in 
the release of glucoregulatory hormones (glucagon, 
insulin and pancreatic polypeptides). This compromised 
insulin release is likely to also compromise osteoblast–
endocrine signalling to the insulin receptor. Indeed, 
a study by Moran and coworkers (Moran et  al. 1997)  
revealed that patients with pancreatic insufficiency, a 
product of chronic pancreatitis, exhibited osteopenia and 
osteoporosis, although they were unable to determine the 
pathological mechanisms underpinning this relationship. 
Furthermore, preptin, a peptide hormone cosecreted by 
pancreatic β cells with insulin and amylin has been shown 
to be anabolic to bone in vitro and in vivo (Cornish et al. 
2007). During osteoporosis, preptin levels are diminished, 
positively correlating with BMD. It is understood that 
preptin is involved in the pathogenesis of osteoporosis 
through bone formation rather than resorption. However, 
further studies are required to clarify whether preptin can 
be a new target for treating osteoporosis by promoting 
bone formation (Li et al. 2013).

Liver disease

The prevalence of patients with chronic liver disease 
experiencing fracture is estimated at 40% (Nakchbandi 
2014). As the liver coordinates many key metabolic 
pathways, it is unsurprising that the experience of disease 
within this organ results in atypical metabolism: liver 
disease itself is the secondary leading cause of osteoporosis. 
However, there is a lack of epidemiological data to support 
the true extent of osteoporosis amongst chronic liver 
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disease sufferers (Nakchbandi 2014). The liver is central to 
the maintenance of health processes in the individual. For 
example, the liver secretes bone-health-associated factors, 
including IGFI and fibronectin. In health, liver-secreted 
fibronectin circulates prior to infiltrating the bone matrix: 
upon infiltration, matrix mineralisation and subsequent 
microarchitectural properties of bone are favourably 
promoted. In addition, the liver is capable of acting as 
a target molecule for bone-active hormones, responding 
with the production of various endocrine molecules 
including IL-6. IL-6 can act directly to activate osteoclasts 
or can serve to stimulate RANKL production via osteoblasts, 
such that osteoclasts are indirectly activated. Further, the 
liver is capable of metabolising bone-active molecules, 
including OCN, such that the period of bioavailability is 
reduced. Yet, in disease states, such as non-alcoholic fatty 
liver disease, IL-6 is upregulated as a by-product of liver 
injury and attempted consequential liver regeneration: 
this increase, in turn, promotes bone resorption by active 
osteoclasts. Furthermore, in chronic liver disease states, 
a reported 92% of patients have vitamin D deficiency: as 
such, calcium is liberated from the bone via osteoclastic 
resorption to retain homeostasis within the blood. The 
net result of this is the loss of bone (Nakchbandi 2014).

Perspective

The last decade has witnessed growing understanding 
of the skeleton’s ability to act as an endocrine organ. 
Significant developments in cellular systems and mouse 
models have revealed increasingly convincing evidence in 
favour of the skeleton’s endocrine function (Fig. 3). This 
adds further credence in reinforcing the importance of the 
skeleton for survival beyond its mechanical roles. It makes 
sense, from an evolutionary perspective, that the skeleton 
produces hormones that regulate skeletal mineralisation, 
cooperating with other endocrine organs to control the 
metabolism of phosphate and calcium.

Despite the significant advances in comprehending 
skeletal energy homeostasis, many questions remain 
unanswered. Putative investigations of other bone-
secreted factors (such as NPP1 and PHOSHPO1) have 
revealed further candidates for links in metabolic health, 
including significant roles in diabetes and obesity 
pathology. Yet, much remains to be identified about 
the specific mechanisms of action and novel pathways 
of these new candidates with regard to skeletal and 
metabolic homeostasis. Continued identification of bone-
secreted factors and their function will aid in answering  

the questions of how and why bone-specific regulation of 
energy metabolism arose. Most recently, lipocalin (LCN2), 
an adipokine once thought to be exclusively secreted by 
adipose tissue has been shown to be an osteoblast-rich, 
secreted protein. LCN2 crosses the blood–brain barrier to 
activate the melanocortin 4 receptor, resulting in appetite 
suppression. Murine loss- and gain-of-function experiments 
demonstrated that LCN2 maintains glucose homeostasis, 
improve glucose tolerance and insulin sensitivity; however, 
more compelling human data are required to fully establish 
the role of LCN2 (Mosialou et al. 2017) (Fig. 3).

Indeed, little is also known about the role of 
formation and function of MAT – does MAT contribute 
to the global regulation of energy metabolism by the 
skeleton? Does MAT provide a local reservoir of energy 
for bone-specific cells during bone remodelling or in 
pathological situations? Further understanding of the 
mechanisms involved in this bone-metabolic axis will 
have many diverse implications for the management 
of T2DM, metabolic syndrome and other diseases of 
bone and adipose physiology. Such knowledge will 
reveal unidentified mechanisms that regulate energy 
homeostasis, thereby allowing development of novel 
pharmacological approaches for managing and treating 
skeletal and metabolic diseases, underscoring the need 
for continued research into the endocrine and metabolic 
functions of the skeleton.
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