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Abstract

Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by glucose metabolic 

disturbance. A number of transcription factors and coactivators are involved in this 

process. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha  

(PGC-1α) is an important transcription coactivator regulating cellular energy metabolism. 

Accumulating evidence has indicated that PGC-1α is involved in the regulation of T2DM. 

Therefore, a better understanding of the roles of PGC-1α may shed light on more 

efficient therapeutic strategies. Here, we review the most recent progress on PGC-1α 

and discuss its regulatory network in major glucose metabolic tissues such as the liver, 

skeletal muscle, pancreas and kidney. The significant associations between PGC-1α 

polymorphisms and T2DM are also discussed in this review.

Introduction

Type 2 diabetes mellitus (T2DM) is a chronic metabolic 
isorder characterized by hyperglycemia in the context of 
insulin resistance (IR) and insulin secretion deficiency 
due to β-cell dysfunction. The global prevalence of T2DM 
is continuously rising, being held responsible for about 
90% of all the 347 million diabetes cases worldwide 
(Yang et al. 2015). T2DM can cause serious microvascular 
and macrovascular complications, such as diabetic 
nephropathy, diabetic retinopathy, diabetic neuropathy, 
ischemic heart disease and cerebrovascular disease. These 
complications predominantly account for the increased 
mortality and economic burden. Many novel medicines 
are available, though the undesirable side effects 
(hypoglycemia, weight gain, gastrointestinal effects and 

cardiovascular complications) and imperfect glycemic 
control limit their use in long-term treatment. Therefore, 
the development of safe and effective drugs for T2DM is 
imperative, for which the molecular-level target therapy 
represents a promising approach.

Peroxisome proliferator-activated receptor gamma 
coactivator 1 alpha (PGC-1α), also known as PPARGC1A 
or PGC-1, is a multifunctional regulatory factor originally 
identified as a coactivator of peroxisome proliferator-
activated receptor gamma (PPARγ) in 1998 (Puigserver et al. 
1998). The PGC-1α gene is located on chromosome 4p15.1 
in humans, a region associated with basal insulin levels 
in Pima Indians (Pratley et  al. 1998). This gene encodes 
a 91 kDa protein, which is predominantly expressed in 

mailto:duanhuijun999@163.com
http://dx.doi.org/10.1530/JOE-16-0021


229:3 R100Review h wu and others PGC-1α, glucose metabolism

http://joe.endocrinology-journals.org 2016 Society for Endocrinology
Printed in Great Britain

Published by Bioscientifica Ltd.
DOI: 10.1530/JOE-16-0021

Jo
u
rn

al
o
f
En

d
o
cr
in
o
lo
g
y

tissues with high energy demands, such as the heart, 
skeletal muscle and kidney (Esterbauer et al. 1999). As a 
coactivator, PGC-1α protein does not bind to DNA directly 
but is recruited to the template through interactions with 
a wide range of transcription factors involved in cellular 
energy metabolism. By regulating the activities of these 
transcription factors, PGC-1α acts as a molecular switch 
for multiple cellular processes, including mitochondrial 
biogenesis and respiration, gluconeogenesis and glucose 
transport, glycogenolysis, fatty acid oxidation, peroxisomal 
remodeling, muscle fiber-type switching, and oxidative 
phosphorylation (Corona & Duchen 2015). As such,  
PGC-1α is a very attractive target for antidiabetic therapy.

In this review, we summarize the major findings on 
the function of PGC-1α in glucose metabolism and discuss 
its potential therapeutic applications for T2DM. The close 
correlation between PGC-1α polymorphisms and T2DM is 
also discussed in this review.

PGC-1α and the liver

The liver is a vital organ responsible for glucose 
homeostasis. Normally, blood glucose concentration is 
stably maintained within a narrow range in both well-
fed and fasting states. This is mainly determined by 
three factors: (i) glucose absorption by the intestine,  
(ii) gluconeogenesis by the liver and (iii) glucose utilization 
by skeletal muscle. In this process, the liver acts as a 
glucose reservoir that balances the glucose storage and 
release. In the well-fed state, the liver uptakes glucose 
from the blood and stores it in the form of glycogen 
(glycogenesis). In the fasting state, the liver synthesizes 
glucose through glycogenolysis and gluconeogenesis 
and releases it into the bloodstream. Impaired hepatic 
glucose uptake and excessive hepatic glucose production 
are partially responsible for hyperglycemia in T2DM. 
Especially, previous studies indicated that PGC-1α plays 
a central role in the regulatory network of glucose 
metabolism in the liver.

PGC-1α is a downstream sensor of metabolic, hor-
monal and inflammatory signals that is responsible 
for the balance of hepatic gluconeogenesis, fatty acid 
β-oxidation and mitochondrial biogenesis. The process 
has been reviewed elsewhere (Sugden et  al. 2010). 
Briefly, in the fasting state, the pancreatic alpha cells 
synthesize and release glucagon to maintain a normal 
blood glucose level. Glucagon binds to its receptor 
present on hepatocytes and subsequently triggers the 
conformational change of G protein, which results 

in the dissociation of α-subunit from the G-protein 
complex. Free α-subunits subsequently bind to adenylate 
cyclase, thereby catalyzing the conversion of adenosine 
triphosphate (ATP) into adenosine 3ʹ,5ʹ-monophosphate 
(cAMP). Two cAMP molecules bind to each regulatory 
subunit of protein kinase (PKA), releasing its catalytic 
subunit, which translocates into the nucleus and 
phosphorylates the cAMP response element (CRE)-
binding protein (CREB) at Ser133. The phosphorylated 
CREB recruits CREB-binding protein (CBP) to the  
PGC-1α promoter and regulates its expression. PGC-1α 
can coactivate several transcriptional factors, including 
hepatocyte nuclear factor-4α (HNF-4α) and forkhead 
box O (FOXO) 1, and therefore control the transcription 
of the rate-limiting gluconeogenic enzymes, such as 
phosphoenolpyruvate carboxykinase (PEPCK), pyruvate 
dehydrogenase kinase isoenzyme 4 (PDHK4) and 
glucose-6-phosphatase (G6Pase). However, after a meal, 
pancreatic beta cells synthesize and release insulin which 
binds to its receptor and triggers the phosphorylation of 
Akt, which in turn phosphorylates PGC-1α and inhibits 
its activity. This results in the stimulation of glycogen 
synthesis and inhibition of gluconeogenesis in the  
liver (Fig. 1).

Moreover, accumulating evidence suggests an 
important role for PGC-1α in the regulation of lipid 
and bile acid metabolism that could contribute to 
gluconeogenesis (Hashidume et al. 2011, Li et al. 2011). 
Recent studies have demonstrated that several signaling 

Figure 1
Signaling pathways of PGC-1α-regulated glucose metabolism in the liver.
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pathways, transcription factors and coactivators 
contribute to these processes through the regulation 
of PGC-1α expression and activity (Fig.  2). Abnormal 
activation of these glucose metabolic processes is closely 
implicated in the pathogenesis of hepatic IR and T2DM.

AMP-activated protein kinase

AMP-activated protein kinase (AMPK) is a highly 
conservative serine/threonine protein kinase. It acts as a 
sensor of cellular energy status critical to the regulation of 
glucose and lipid metabolism in various organs, especially 
the skeletal muscle and liver. Activation of hepatic AMPK 
was reported to decrease glucose production and increase 
fatty acid oxidation (Viollet et  al. 2009). Thus, AMPK 
is now recognized as a promising drug target for the 
treatment of T2DM. There is a strong correlation between 
AMPK/PGC-1α signaling pathway and T2DM (Weickert 
& Pfeiffer 2006). For instance, metformin, one of the 
most widely prescribed drugs for T2DM, exerts a strong 
antihyperglycemic effect partly though the increasing 
of PGC-1α expression, via its upstream kinase AMPK 
(Aatsinki et al. 2014). These results are consistent with the 
previous study showing that AMPK activator metformin 
and adenoviral overexpression of AMPK increase PGC-1α 
transcriptional activity in a phosphorylation-dependent 
manner (Buler et al. 2012b). In addition, several Chinese 
herbal medicines for diabetes mellitus recover glucose 
homeostasis by regulating the AMPK/PGC-1α signaling 
pathway. Yuan and Piao (2011) reported that an active 

ingredient from Artemisia sacrorum Ledeb. decreased  
PGC-1α, G6Pase and PEPCK gene expression through 
AMPK-mediated inhibitory phosphorylation of glycogen 
synthase kinase-3β (pGSK-3β) and CREB in human 
HepG2 cells. In 2012, Yuan and coworkers subsequently 
reported that ginsenoside Rg2 also suppresses hepatic 
gluconeogenesis through AMPK/PGC-1α signaling 
pathway (Yuan et  al. 2012). The phosphorylation of 
AMPK induced by Rg2 decreases the phosphorylation 
of CREB via pGSK-3β and disrupts the interaction of 
CREB and CREB-regulated transcription coactivator 
2 (CRTC2) via induction of Src homology region 2 (SH2) 
domain-containing phosphatase (SHP) expression, which 
subsequently inhibits PGC-1α-dependent gluconeogenic 
enzyme gene expression. In a recent study, the same 
research team reported the effects of eugenol on hepatic 
glucose production in hepatocytes and C57BL/6J mice and 
obtained analogous results (Jeong et al. 2014). Moreover, 
berberine, an isoquinoline alkaloid isolated from genera 
Berberis and Coptis, can increase the phosphorylation of 
AMPK (Thr172) and reduce the expression of PGC-1α, 
resulting in a significant improvement in glucose tolerance 
in diabetic rats (Zhang et al. 2012). The effect of above-
mentioned herbal medicines on gluconeogenesis can be 
abolished by the compound C (an AMPK inhibitor).

In addition, AMPK/PGC-1α signaling pathway 
alleviates IR and T2DM by modulating hepatic 
lipogenesis and fatty acid synthesis. For instance, 
deletion of the mammalian homolog of Drosophila Indy 
in mice attenuates hepatic lipogenesis and IR through 
the regulation of AMPK/PGC-1α signaling pathway 
(Birkenfeld et  al. 2011). Recent research has indicated 
that monascin and ankaflavin can prevent fatty acid 
accumulation partly mediated by the activation of AMPK 
and subsequent promotion of fatty acid oxidation by 
PGC-1α (Hsu et al. 2014). Furthermore, it is also reported 
that interference of AMPK/PGC-1α pathway by metformin 
triggers the expression of anti-inflammatory interleukin 
1 receptor antagonist (IL1RA) (Buler et al. 2012b). IL1RA 
is a naturally occurring anti-inflammatory antagonist of 
IL-1, IL-6, leptin, TNF-α, and several other IL-1-dependent 
cytokines and chemokines, and improves β-cell function 
and reduces hepatic lipogenic gene expression (Tack et al. 
2012, Negrin et al. 2014).

Estrogen-related receptors

Estrogen-related receptors (ERRα, ERRβ and ERRγ) are 
orphan nuclear receptors. Notably, through interaction 
with PGC-1α, ERRα and ERRγ are involved in the 

Figure 2
Interactions of PGC-1α with the main factors involved in hepatic glucose 
metabolism.
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regulation of mitochondrial biogenesis and fatty acid 
β-oxidation. Recent study has shown that PGC-1α can 
coactivate ERRα to induce the expression of glucokinase, 
a key enzyme of glucose metabolism in the liver (Zhu 
et al. 2010). Especially, a study reported that ERRα acted 
as a repressor of gluconeogenesis by directly binding to 
the glucocorticoid accessory factor 3 (gAF3) site of the 
PEPCK promoter, which in turn inhibited the recruitment 
of PGC-1α to the PEPCK gene promoter (Herzog et  al. 
2006). Taken together, PGC-1α/ERRα-negative feedback 
loop participates in the regulation of hepatic glucose 
metabolism by repressing gluconeogenesis and increasing 
glucose utilization. Moreover, it was also demonstrated 
that ERRγ, along with coactivator PGC-1α, significantly 
increased the phosphatidic acid phosphatase function of 
lipins and subsequently diminished insulin-stimulated 
Akt phosphorylation, resulting in dysregulation of insulin 
signaling in HepG2 cells (Kim et al. 2011). A subsequent 
study from the same laboratory also found that ERRγ 
appeared to be an important downstream target of 
the glucagon signaling pathway. Glucagon-mediated 
activation of CREB–CRTC2 induces hepatic ERRγ gene 
expression, which in turn increases G6Pase and PEPCK 
gene expression along with coactivator PGC-1α (Kim et al. 
2012a). How ERRα and ERRγ differentially affect PGC-1α 
activity remains largely elusive.

Hepatocyte nuclear factor-4α

Hepatocyte nuclear factor-4α (HNF-4α) is an orphan 
nuclear receptor as are the ERRs and a liver-enriched 
transcription factor that regulates the metabolism of 
glucose, fatty acids, amino acids, cholesterol, lipids, bile 
acids and drugs, whereas its dysfunction leads to impaired 
glucose transport and glycolysis. It is coactivated by  
PGC-1α. Several studies have shown its strong correlation 
with T2DM (Andrulionyte et al. 2006, Jafar-Mohammadi 
et al. 2011). Full transcriptional activation of the PEPCK 
promoter requires coactivation of the HNF-4α by PGC-1α 
(Yoon et al. 2001). PGC-1α protein contains three LXXLL 
motifs responsible for the interaction with HNF-4α. These 
LXXLL motifs synergistically activate HNF-4α-mediated 
transcription (Rha et  al. 2009). Additionally, a study 
carried out in the mouse hepatocytes demonstrated that 
the region between –298 and –180 of the G6Pase promo-
ter contained several HNF-4α-binding sites responsible 
for the activation of G6Pase by PGC-1α (Rhee et al. 2003). 
Interestingly, in the same year, HNF-4α was reported 
to mediate this activation by binding to the region 
between −76 and −64 of the mouse G6Pase promoter  

(Boustead et al. 2003). In addition to the HNF-4α-binding 
site located between −76 and −64, a 3 bp sequence 
discovered by the same team was found to be a crucial 
site for HNF-4α-binding activity (Schilling et al. 2008). In 
addition, many other transcription factors and coactivator 
proteins, such as DAX-1 (dosage-sensitive sex reversal, 
adrenal hypoplasia critical region, on chromosome X, 
gene 1), sterol regula tory element-binding proteins 
(SREBPs), vanin-1, cAMP, xenobiotic-metabolizing 
cytochrome P450 (CYP) 2A5 enzyme, HNF-6, and 
FOXO1, also contribute to the PGC-1α/HNF-4α-mediated 
transcriptional regulation of the gluconeogenic genes 
(Yamamoto et  al. 2004, Beaudry et  al. 2006, Arpiainen 
et al. 2008, Schilling et al. 2008, Nedumaran et al. 2009, 
Dankel et al. 2010, Chen et al. 2014).

Sirtuins (SIRTs)

The mammalian SIRTs (SIRT1–7), a family of NAD(+)-
dependent deacetylases, are implicated in a variety of 
cellular processes, including aging, gene transcription, 
DNA repair, cellular stress, apoptosis, energy metabolism, 
cancer and inflammation. SIRT1 is the most studied 
SIRT that regulates the expression of gluconeogenic and 
glycolytic enzymes and promotes the hepatic glucose 
output. These effects are mediated, at least in part, by 
interacting with PGC-1α and deacetylating it (Ghiraldini 
et al. 2013). Consistently, treatment with the specific SIRT1 
activator SRT1720 increases mitochondrial membrane 
potential and cellular ATP content in HepG2 cells, and 
this effect was blocked by PGC-1α knockdown (Minor 
et  al. 2011). This result was subsequently confirmed by 
other groups using liver-specific SIRT1 knockout mice 
(Rodgers & Puigserver 2007). Taken together, the SIRT1 
deacetylates PGC-1α and increases its activity, and thus 
plays a pivotal role in the hepatic glucose metabolism 
and diabetes, both in vitro and in vivo. SIRT1/PGC-1α 
axis  also affects fatty acid and cholesterol metabolism 
in the liver. For example, silencing SIRT1 in the liver by 
adenovirus-delivered SIRT1 small hairpin RNA reduces the 
gene expression of enzymes involved in fatty acids and 
triglyceride metabolism. These effects are partly dependent 
on PGC-1α (Rodgers & Puigserver 2007). It is then further 
revealed using liver-specific SIRT1 knockout mice that 
reduced SIRT1 expression impaired PPARα-mediated fatty 
acid metabolism through PGC-1α, a key coactivator of 
PPARα (Purushotham et al. 2009). Indeed, in a genome-
wide coactivation study, PGC-1α was found to enhance 
the recruitment of 60 kDa BRG-1/Brm-associated factor 
subunit A (BAF60A) to the PPARα-binding sites (PPREs), 
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which further activated PPARα-mediated peroxisomal and 
mitochondrial fat oxidation genes in the liver (Li et  al. 
2008). Recently, resistin has been reported to weaken the 
interaction between SIRT1 and PPARα as well as PGC-1α  
(Yu et al. 2013). Given that resistin was initially described 
as an adipokine increasing hepatic IR and glucose 
metabolism through an AMPK-dependent pathway, it is 
plausible that the activity of PGC-1α in the liver may be 
governed by a complex network of interactions among 
SIRT1, AMPK and PPARα. This is in accordance with another 
study that indicates a critical role of PGC-1α in cholesterol 
synthesis (Rodrigue-Way et al. 2014). In addition, it is also 
reported that SIRT1/PGC-1α axis regulated glucose and 
lipid metabolism through a PPARα-independent pathway 
(Peeters et al. 2011, Alberdi et al. 2013). Moreover, several 
lines of evidence have indicated that PGC-1α activated by 
SIRT1 also modulates the effects of thyroid hormone on 
lipid and glucose homeostasis (Suh et al. 2013, Thakran 
et  al. 2013). These findings suggest certain connections 
between hormonal signaling and SIRT1/PGC-1α axis in 
the regulation of energy metabolism.

Moreover, recent studies have shed light on the 
relationship between other SIRTs and PGC-1α in hepatic 
metabolism. For instance, it has been demonstrated that 
PGC-1α can strongly promote SIRT3 gene expression and 
is mediated by coactivation of ERRα (Buler et al. 2012a). 
Further study has illuminated the complex relationship 
between these transcription factors. Recent research 
on ubiquinol-10 has indicated that SIRT3 is under the 
control of cAMP/AMPK/SIRT1/PGC-1α signaling (Tian 
et  al. 2014), whereas SIRT5 is reported to increase ATP 
synthesis and oxygen consumption in HepG2 cells, which 
is antagonized by PGC-1α and AMPK (Buler et al. 2014). 
Surprisingly, recent study suggests that the deacetylase 
SIRT6 can suppress hepatic glucose production by acting 
as a positive regulator of general control non-derepressible 
5 (GCN5)-mediated acetylation of PGC-1α (Dominy et al. 
2012). These findings expand the spectrum of SIRTs/PGC-
1α axis and provide new therapeutic strategies for T2DM.

p38 mitogen-activated protein kinase (p38 MAPK) and 
other post-translational modulators

The serine/threonine protein kinase p38 mitogen-
activated protein kinase (p38 MAPK) is a member of the 
MAPK family (also including JNK, ERK1/2 and ERK5), 
which is specifically activated by phosphorylation in 
response to a variety of extracellular stimuli. It plays 
an important role in pathological conditions, such as 
diabetes. p38 MAPK can regulate hepatic glucose, under 

the control of free fatty acids (FFAs), glucagon and insulin. 
PGC-1α is directly phosphorylated and activated by p38 
MAPK, and then mediates FFA-induced gluconeogenesis 
in primary hepatocytes (Collins et  al. 2006). This is 
consistent with a previous report showing that inhibition 
of p38 MAPK by SB203580 or siRNA can attenuate the 
stimulatory effect of glucagon on PGC-1α promoter 
activation (Cao et al. 2005). Similarly, the control of PGC-
1α by p38 MAPK appears to be also involved in fatty acid 
metabolism. Acetyl-coenzyme A carboxylase-α (ACCα) 
is the rate-limiting enzyme for fatty acid synthesis. 
Inhibiting p38 MAPK with SB203580 upregulates ACCα 
gene expression by modulating the expression of PGC-1α 
(Talukdar et al. 2007). Interestingly, ACC is also regulated 
by thyroid hormone and AMPK (Huang & Freake 1998, 
Chang et al. 2013), suggesting a complex crosstalk among 
these signaling pathways. In addition to acetylation and 
phosphorylation, the activity of PGC-1α is also strongly 
modulated by O-GlcNAcylation and ubiquitination. For 
example, O-GlcNAcylated PGC-1α has increased affinity to 
the deubiquitinase BAP1. This recruitment subsequently 
decreases ubiquitination of PGC-1α, thereby enhancing 
PGC-1α stability and promoting hepatic gluconeogenesis 
(Ruan et al. 2012).

Hepatitis C virus

Hepatitis C virus (HCV) infection is a global health 
problem affecting about 130–150 million people. It 
predisposes the infected to both type 1 diabetes mellitus 
(T1DM) and T2DM (Antonelli et  al. 2014). PGC-1α 
expression is dramatically elevated in HCV-infected cells, 
accompanied by an upregulated expression of PEPCK 
and G6Pase (Qadri et  al. 2012, Shlomai et  al. 2012). In 
addition, the HCV nonstructural protein 5A induces 
metabolic dysregulation and IR in human hepatoma cells, 
in which PGC-1α could be involved (Parvaiz et al. 2014). 
These results emphasize the important role of PGC-1α in 
bridging the HCV infection to hepatic IR and diabetes 
mellitus. In addition, oxidative stress and endoplasmic 
reticulum (ER) stress are also responsible for the 
association of HCV with diabetes mellitus. Treatment of 
HCV replicon cells with the antioxidant N-acetylcysteine 
can attenuate the PGC-1α expression induced by HCV, 
suggesting that HCV-promoted PGC-1α induction is 
mediated by oxidative stress and inflammation (Shlomai 
et  al. 2012). In addition, a recent study has reported 
that HCV infection induces PGC-1α expression and ER 
stress. Moreover, pharmacological induction of ER stress 
upregulates PGC-1α expression, and pharmacological 
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inhibition of HCV-induced ER stress impairs PGC-1α 
upregulation (Yao et al. 2014).

Glucocorticoids

Glucocorticoids (GCs), such as dexamethasone, predni-
sone and hydrocortisone, are often prescribed as anti-
inflammatory agents. Recently, they have been gradually 
recognized as the important regulators of diabetes 
mellitus because of their critical roles in peripheral IR 
and β-cell insulin secretion. In the liver, the function 
of GCs is ultimately complex and partly mediated by 
PGC-1α. First, overexpression of PGC-1α can strongly 
potentiate the activity of PEPCK promoter in response 
to dexamethasone (Herzig et  al. 2001), which can 
be explained by the following facts. Synergistic with 
cAMP, GCs significantly induced the expression of 
PGC-1α in hepatocytes (Felder et al. 2011). PGC-1α has 
the ability to physically interact with glucocorticoid 
receptor (GR) and increase its activity (Knutti et  al. 
2000). Subsequently, GR interacts with the glucocorticoid 
response unit in the PEPCK promoter and promotes 
its transcriptional activation (Herzig et  al. 2001). 
Secondly, ubiquitin-specific protease 2 (USP2) is another 
downstream target of hepatic GCs/PGC-1α signaling to 
stimulate hepatic gluconeogenesis and glucose output 
(Molusky et al. 2012b). Intriguingly, USP2 is reported to 
induce 11β-hydroxysteroid dehydrogenase (11β-HSD) 
expression, which subsequently converts GCs into 
active forms (Molusky et  al. 2012a). Finally, microRNA-
29a-c ameliorates forskolin/dexamethasone-induced 
hepatic glucose production by reducing PGC-1α and 
G6Pase gene expression (Liang et al. 2013), indicating an 
alternative strategy for alleviating glucocorticoid-induced 
IR. Collectively, GCs interact with PGC-1α signaling in a 
positive feedback loop to regulate glucose homeostasis.

PGC-1α and skeletal muscle

The skeletal muscle is a major site of glucose and fatty acid 
utilization. It is generally accepted that glucose uptake and 
disposal are the most important limiting factors in fuel 
metabolism and energy homeostasis of skeletal muscle. 
Thus, a widespread opinion holds that IR in obesity and 
T2DM are primarily due to the defects in one or both of 
these factors. These defects are always accompanied by 
oxidative stress, ER stress, mitochondrial insufficiency 
and chronic low-grade inflammation. In contrast to the 
liver and islets, the expression of PGC-1α is downregulated 

in human diabetic muscle. Notably, researchers have 
successfully established a causal relationship between 
PGC-1α dysregulation in skeletal muscle and abnormal 
energy homeostasis, as well as IR and T2DM. Furthermore, 
PGC-1α is also involved in the regulation of muscle fiber-
type switching (Wang et al. 2013) and autophagy (Yu & 
Long 2015).

Glucose uptake

The skeletal muscle accounts for about 80% of insulin-
stimulated glucose disposal. Glucose transporter 4 
(GLUT4) is a major glucose transporter expressed in the 
skeletal muscle, adipocyte and cardiac muscle. Insulin 
facilitates glucose uptake in skeletal muscle by promoting 
GLUT4 translocation from intracellular compartments to 
the plasma membrane. Therefore, impairment of insulin-
stimulated GLUT4 translocation results in reduced 
glucose disposal and peripheral IR in T2DM. It has been 
reported that overexpression of PGC-1α significantly 
activates GLUT4 expression and increases glucose uptake 
(Wende et  al. 2007). Overexpression of PGC-1α-related 
coactivator (PRC) exerts a similar effect (Philp et al. 2011). 
These findings highlight the importance of PGC-1α in 
the regulation of GLUT4 expression and translocation 
in muscle. At least two mechanisms are involved in this 
process. (1) Pessin and his colleagues (Thai et  al. 1998, 
Mora & Pessin 2000) have reported that myocyte enhancer 
factor 2A (MEF2A) binds to the GLUT4 promoter and 
mediates GLUT4 transcription in skeletal muscles. PGC-
1α can increase the expression of MEF2A by activating 
nuclear respiratory factor 1 (NRF1) (Ramachandran 
et al. 2008). Moreover, PGC-1 also binds to MEF2C and 
coactivates it to increase GLUT4 expression (Michael et al. 
2001). However, the overexpression of MEF2C alone is 
necessary but not sufficient to drive GLUT4 transcription 
(Handschin et  al. 2003), suggesting that PGC-1α may 
mediate GLUT4 expression via a MEF2-independent 
signaling pathway. (2) AMPK activator (AICAR), alone 
or in combination with insulin, increases Akt substrate 
of 160 kDa (AS160) phosphorylation in skeletal muscle 
(Kramer et  al. 2006). Phosphorylation of AS160 can 
activate Rab proteins in GLUT4 vesicles and promote its 
translocation to the plasma membrane (Satoh 2014). Two 
recent reports have reported that PGC-1α is essential for 
AICAR-induced expression of GLUT4 (Leick et  al. 2010, 
Suwa et  al. 2015). These results are consistent with the 
previous report that modest PGC-1α overexpression in 
obese Zucker rat muscles can increase insulin-induced 
AS160 phosphorylation (Benton et  al. 2010). Several 
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transcription factors and coactivators are implicated 
in PGC-1α-induced translocation and activation of 
GLUT4, either dependent on or independent of insulin, 
including AMPK (Jager et  al. 2007), SIRT1 (Zhang 
et  al. 2011), p38 MAPK (Wright 2007), ERR (Cho et  al. 
2013), and PPARγ (Kang et  al. 2013). Specifically, some 
antidiabetic and antioxidative agents, such as lipoic acid, 
oligomannuronate, metformin and selenium-enriched 
exopolysaccharides, can improve skeletal muscle glucose 
uptake through AMPK/PGC-1α/GLUT4 pathway (Wang 
et al. 2010, Hao et al. 2011, Zhou et al. 2014). Consistently, 
both ER stress and oxidative stress are reported to impair 
GLUT4 production and glucose uptake via a PGC-1α-
dependent signaling pathway (Raciti et al. 2010, Aoi et al. 
2013). Moreover, aberrant DNA methylation in the PGC-1α  
promoter sequence also contributes to impaired glucose 
tolerance by influencing the expression of PGC-1α and 
GLUT4 in skeletal muscle (Zeng et al. 2013). In addition, 
PGC-1α has been shown to directly induce angiogenesis in 
skeletal muscle by enhancing the delivery of oxygen and 
glucose (Arany et al. 2008, Rowe et al. 2014), although not 
in all studies (Sawada et al. 2014). Thus, PGC-1α-mediated 
increase in skeletal muscle glucose uptake is probably due 
to the modulation of blood flow. Taken together, these 
findings reveal a significant association between PGC-1α 
and glucose uptake.

Glucose disposal

Impaired glucose disposal in skeletal muscle reduces 
insulin sensitivity and contributes to the development of 
T2DM. PGC-1α sets a strict control on glucose disposal in 
skeletal muscle, including suppression of glycolysis and 
glucose oxidation, inhibition of glycogen degradation, 
and augmentation of glycogen synthesis and fatty acid 
oxidation (Wende et  al. 2007, Mormeneo et  al. 2012). 
As described previously, PGC-1α activity is regulated by 
a variety of posttranslational modifications, especially 
by phosphorylation and acetylation. PGC-1α is involved 
in many signaling pathways that are critical to glucose 
storage and utilization, including AMPK (Li et al. 2014), 
p38 MAPK (Hong et al. 2011), and SIRT1 pathways (Gao 
et  al. 2014). Furthermore, a series of studies have shed 
light on the role of posttranslational modifications of 
PGC-1α in glucose metabolism. For example, Silvestre 
and coworkers have reported that skeletal muscle-specific 
AMPKα1/2 knockout mice display impaired glucose 
tolerance and downregulated SIRT1, in association with 
decreased PGC-1α gene expression and deacetylation 
(Silvestre et  al. 2014). The authors further show that 

SIRT1 inversely activates AMPK activity through 
phosphorylation of Thr172. However, as the relationship 
between p38 MAPK and AMPK pathways is particularly 
complicated, whether AMPK lies upstream of p38 MAPK is 
still debated. The mechanisms of how PGC-1α is regulated 
by p38 MAPK are significantly different. First, p38 MAPK 
directly phosphorylates PGC-1α at three sites (threonine 
262, serine 265 and threonine 298) (Puigserver et al. 2001), 
which disrupts the binding and repression of PGC-1α by 
repressors such as p160 Myb binding protein (p160MBP), 
and greatly enhances the transcriptional activity of PGC-1α  
(Fan et  al. 2004). These findings provide new insights 
into the regulation of PGC-1α by p38 MAPK. Second, 
p38 MAPK can indirectly increase PGC-1α expression. 
PGC-1α promoter comprises several positive regulatory 
domains that bind different cooperative transcription 
factors. Phosphorylation of MEF2 and ATF2 by p38 
MAPK stimulates PGC-1α expression by binding to the 
regulatory domains on the PGC1α promoter, respectively 
(Fernandez-Marcos & Auwerx 2011). Conversely, 
angiotensin II stimulates p38 MAPK-dependent PGC-
1α serine 570 phosphorylation and the subsequent 
GCN5-dependent acetylation, repression of PGC-1α 
cotranscriptional activity, and downregulation of catalase 
expression in vascular smooth muscle cells. Whether p38 
MAPK plays a positive or negative role in PGC-1α gene 
expression and activity remains controversial. 

PGC-1α and pancreas

Pancreatic β cells are responsible for synthesizing and 
secreting insulin, which helps to maintain blood glucose 
levels within a normal range. The reduction of pancreatic 
β cells mass is now widely acknowledged as an important 
pathophysiological factor implicated in T2DM. To date, 
several studies have reported the close relationship 
between PGC-1α and pancreatic β-cell dysfunction. For 
instance, adenovirus-mediated overexpression of PGC-1α  
in isolated rat islets results in a decrease in glucose-
stimulated insulin secretion (Yoon et al. 2003). Although 
the exact mechanism through which PGC-1α affects the 
pancreatic islet function is still not completely elucidated, 
the explanation that follows here seems reasonable.

Pancreatic β-cell apoptosis

PGC-1α is an important regulator of pancreatic β-cell 
apoptosis. On one hand, PGC-1α is involved in the 
glucotoxicity-induced pancreatic β cells apoptosis. 
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Glucokinase, a key regulatory enzyme that catalyzes 
glucose to glucose-6-phosphate, plays an important role 
in the regulation of glucose-stimulated insulin secretion 
by acting as a ‘glucose sensor’ in pancreatic islets. It has 
been reported that YH-GKA, a novel benzamide activator 
of glucokinase, dramatically reduces the mRNA level 
of PGC-1α and prevents glucotoxicity-induced INS-1 
pancreatic β-cell apoptosis (Oh et al. 2014). Interestingly, 
PGC-1α overexpression in isolated rat islets induces the 
expression of G6Pase and suppresses glucokinase and 
glycerol-3-phosphate dehydrogenase, and therefore 
blunts membrane depolarization and insulin exocytosis 
in response to glucose (Yoon et  al. 2003). On the other 
hand, PGC-1α mediates the FFA-induced pancreatic β-cell 
apoptosis in the development of T2DM, a process known 
as ‘lipotoxicity’. Zhang and coworkers demonstrated that 
there is a direct correlation between FFAs and PGC-1α  
(Zhang et  al. 2005). After 72-h incubation, elevated 
FFAs  (oleate/palmitate) not only dose-dependently 
increase PGC-1α expression level in isolated islets but also 
increase PGC-1α mRNA level in isolated islets and in mouse 
β-cell-derived bTC3 cell lines. Furthermore, recent data 
demonstrate that NADH-cytochrome b5 oxidoreductase 
(Ncb5or)-null mice, characterized by increased intracellular 
saturated fatty acid accumulation and hyperglycemia, 
show significantly higher islet transcript level of PGC-1α 
accompanied by accelerated β-cell injury (Guo et al. 2012). 
Taken together, these results indicate that the effects of 
PGC-1α on pancreatic β-cell apoptosis may at least in part 
be mediated by altered FFA metabolism. However, some 
recent conflicting reports showed that palmitic acid (PA) 
can extensively reduce the expression of PGC-1α mRNA 
and increase pancreatic β-cell apoptosis (He et  al. 2011). 
The reason for the discrepancy is currently unclear.

Pancreatic β-cell regeneration

The development of T2DM partly depends on the balance 
between β-cell proliferation and death (apoptosis). 
Therefore, the regeneration of pancreatic β cells is 
considered to be a potentially curative treatment for 
T2DM. A recent study has demonstrated that the increased 
expression of PGC-1α is closely related to glucocorticoid-
suppressed expansion and transdifferentiation of porcine 
neonatal pancreatic cell clusters into β cells (Kim et  al. 
2012b). Subsequently in 2014, the same research team 
reported that the silencing of PGC-1α by siPGC-1α 
significantly improved the glucocorticoid-suppressed 
expansion and transdifferentiation of porcine neonatal 
pancreatic cell clusters via the FOXO1–PDX1 pathway 

(Kim et  al. 2014). These data indicate that PGC-1α is a 
critical regulator of pancreatic β-cell regeneration. 

Insulin secretion

Impaired insulin secretion by pancreatic β cells is a 
characteristic feature of T2DM. Uncoupling protein 2 
(UCP2), a mitochondrial transporter protein, has been 
reported to participate in the regulation of glucose-
stimulated insulin secretion from pancreatic β cells (Sun 
et  al. 2011). In cold-exposed rats, inhibition of islet  
PGC-1α expression by antisense oligonucleotide corrects 
UCP2 expression level and partially normalizes insulin 
secretion in pancreatic islets (De Souza et  al. 2003). 
Oberkofler and coworkers subsequently characterize the 
underlying mechanism that PGC-1α can enhance the 
expression of sterol regulatory element-binding protein 
isoforms (SREBP)-1c via coactivation of the liver X receptor 
and upregulate the expression of SREBP2 via coactivation 
of the GR, resulting in an increase in UCP2 expression in 
INS-1E β cells (Oberkofler et al. 2006).

Mitochondrial dysfunction

In pancreatic β cells, mitochondrial metabolism is respon-
sible for the generation of metabolic signals and coupling 
glucose recognition with insulin secretion. Mitochondrial 
dysfunction is known to produce excessive reactive 
oxygen species (ROS), eventually leading to oxidative 
stress and pancreatic β-cell dysfunction. PGC-1α, as a 
crucial factor responsible for mitochondrial biogenesis, 
is closely associated with oxidative stress-induced 
pancreatic β-cell dysfunction. For instance, transient 
exposure of INS-1E β cells to oxidative stress results 
in increased mitochondrial ROS formation, decreased  
PGC-1α expression, and reduced 15 mM glucose-stimulated 
insulin secretion (Li et  al. 2009). GW501516, a specific 
PPARδ agonist, decreases basal insulin secretion, but not 
glucose-stimulated insulin secretion (GSIS) in palmitate-
exposed HIT-T15 pancreatic β cells (Jiang et  al. 2010). 
These changes correlate with improved mitochondrial 
energy metabolism and increased mRNA expression 
of PGC-1α. Recently, mitochondrial dysfunction in 
pancreatic islets of congenitally malnourished offspring 
has also been studied. Prenatal malnutrition leads to a 
reduction of insulin secretion in 3-month-old male and 
female offsprings, due to mitochondrial dysfunction and 
higher PGC-1α expression (Theys et al. 2011). Glutathione 
peroxidase (GPX) is a major antioxidant enzyme that 
converts hydrogen peroxide into water and protects cells 
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against oxidative stress. Thus, a recent study shows that 
GPX mimic ebselen enhances GSIS in islets of GPX1 
knockout mice, and knockdown of PGC-1α by siRNA can 
largely eliminate this effect (Wang et al. 2014).

PGC-1α and diabetic nephropathy

Diabetic nephropathy (DN) is a major microvascular 
complication of diabetes mellitus and the leading cause 
of end-stage renal disease, affecting approximately one-
third of diabetic patients, with no effective treatment 
available so far. Several studies, both in human beings 
and in animal models, have provided important clues to 
its etiology and pathogenesis. Considering the key role 
of mitochondrial dysfunction in DN, many researchers 
have focused their attention on PGC-1α. The mRNA and 
protein expression of PGC-1α are markedly downregulated 
in renal tubular cells of streptozotocin-induced diabetic 
rats. Rap1, a member of the RAS-like small GTP-binding 
protein superfamily, can significantly ameliorate renal 
tubular mitochondrial dysfunction, oxidative stress and 
apoptosis concomitant with the increased expression 
of PGC-1α and ameliorated tubular injury (Xiao et  al. 
2014). In two other diabetic models, transgenic OVE26 
and Akt2-KO mouse, PGC-1α expression is also markedly 
downregulated, associated with significant changes in 
several glucose metabolism-related regulators (Sun et  al. 
2014). The pathogenesis of DN may, at least in part, be 
due to PGC-1α-mediated mitochondrial biogenesis. 

The AMPK/SIRT1/PGC-1α pathway is a fundamental 
signaling system in energy metabolism and mitochondrial 
biogenesis. Recent studies relate the AMPK/SIRT1/PGC-1α 
signaling pathway to the progression of DN. For example, 
resveratrol, a type of natural phenol extracted primarily 
from the traditional Chinese medicinal herb Polygonum 
cuspidatum, has been reported to prevent DN in db/db 
mice through the phosphorylation of AMPK and the 
activation of SIRT1/PGC-1α signaling (Kim et  al. 2013). 
In 2014, another kind of natural plant polyphenol, the 
grape seed proanthocyanidin extract, is also reported to 
ameliorate podocyte injury in low-dose streptozotocin- 
and high-carbohydrate/high-fat diet-induced diabetic 
rats through the activation of AMPK/SIRT1/PGC-1α 
signaling pathway (Bao et  al. 2014). Moreover, several 
studies have evaluated the therapeutic efficacy of PGC-1α  
on DN. For instance, both telmisartan and fenofibrate 
exert their renoprotective effects in animal models 
of DN by activating PGC-1α expression and reducing 
oxidative stress (Lakshmanan et  al. 2011, Hong et  al. 

2014), indicating the therapeutic potential of PGC-1α in 
the treatment of DN. Nonetheless, researchers from Korea 
have shown conflicting results, reporting that PGC-1α 
is increased in response to high-glucose (25 mM) or IL-6 
treatment. PGC-1α overexpression contributes to high 
glucose-induced apoptosis and growth arrest of renal 
podocytes (Kim & Park 2013). Although the discrepancy 
is not yet fully explained, it can be hypothesized that 
sustained activation of PGC-1α may change the energy 
supply–demand balance and cause different pathogenic 
outcomes in DN.

PGC-1α, oxidative stress and T2DM

As mentioned previously, PGC-1α is a crucial factor 
responsible for mitochondrial biogenesis. Mitochondrial 
dysfunction will produce excessive ROS, eventually leading 
to oxidative stress. Therefore, PGC-1α and oxidative stress 
are deeply implicated in T2DM and its complications. First, 
in the hepatocytes, it has been indicated that elevated 
endogenous asymmetric dimethylarginine (ADMA) 
contributes to the suppression of hepatic mitochondrial 
biogenesis, PGC-1α transcription and diabetes. These 
effects of ADMA could be inhibited by treatments with 
antioxidant (Chen et  al. 2011). This is consistent with 
another report showing that the downregulation of 
GLUT2 and PGC-1α induced by glucose oxidase was 
evidently inhibited by NAC in rats and in hepatocytes 
(Wang et  al. 2012). Secondly, in arsenic-treated mouse 
adipocytes and myotubes, the expression of SIRT3 and its 
associated transcription factor, FOXO3a, was dramatically 
decreased. Arsenic decreased the binding affinity of 
FOXO3a to the PGC-1α promoter. Overexpression of 
SIRT3 can stimulate FOXO3a deacetylation and the 
subsequent PGC-1α and MnSOD upregulation, which 
facilitates ROS detoxification in response to chronic 
arsenic exposure (Padmaja Divya et al. 2015). Thirdly, in 
dorsal root ganglion (DRG) neurons, Choi and coworkers 
reported that adenoviral overexpression of PGC-1α can 
prevent high glucose-induced oxidative stress (Choi et al. 
2014). Fourthly, in rat glomerular mesangial cells, high 
glucose treatment resulted in the downregulation of PGC-
1α, accompanied by an increase in ROS generation and 
mesangial cell hypertrophy. The transfection of pcDNA3–
PGC-1α can significantly reverse these pathological 
changes (Guo et al. 2015). Finally, recent study, in cardiac 
cells, has demonstrated that sulforaphane treatment can 
increase fatty acid oxidation and prevent cardiomyopathy 
probably by reversing oxidative stress-induced inhibition 
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of LKB1/AMPK/PGC-1α signaling pathway (Zhang et  al. 
2014). Taken together, these findings indicate a significant 
cooperative role of PGC-1α and oxidative stress in the 
pathogenesis of diabetes.

PGC-1α polymorphisms and T2DM

Several previous studies have demonstrated a close 
correlation between polymorphisms in the PGC-1α 
gene and T2DM. For example, Gly482Ser, the most 
common polymorphism in the PGC-1α gene, is positively 
associated with T2DM in different populations, including 
the Chinese (Lu et  al. 2007); Danish (Ek et  al. 2001); 
Japanese (Hara et  al. 2002); and Canadian, German, 
Austrian, Finnish, Norwegian and Spanish (Andrulionyte 
et al. 2004). 

The underlying mechanisms are as follows: on the 
one hand, the Gly482Ser polymorphism of PGC-1α  
gene is associated with a decreased PGC-1α mRNA 
expression and reduced insulin secretion (Ling et  al. 
2008). Additionally, an autosomal genomic scan shows 
that fasting plasma insulin concentration is linked to 
chromosome 4p15-q12 (Pratley et al. 1998). Interestingly, 
chromosome 4p15-q12 is syntenic to the chromosome 
4p15.1, a region where PGC-1α gene has been mapped 
(Esterbauer et  al. 1999). On the other hand, several 
published studies have found significant association 
between the Gly482Ser variant of PGC-1α gene and IR 
(Fanelli et al. 2005, Goyenechea et al. 2008). First, PGC-1α  
variants with Gly/Gly at the 482nd amino acid impair 
the transcription of mitochondrial transcriptional factor 
A (TFAM), resulting in mitochondrial dysfunction and IR 
(Choi et al. 2006). TFAM is a DNA-binding protein with 
high-mobility group (HMG)-box domains and acts as a 
link between the nucleus and the mitochondria during 
mitochondrial DNA (mtDNA) replication, transcription 
and inheritance. Recently, some studies have suggested 
that the expression of Tfam is significantly downregulated 
in the liver (Kim et al. 2015) and muscle cells (Taheripak 
et  al. 2013) of db/db type 2 diabetic mice and DRG 
neurons (Choi et  al. 2014) of streptozotocin-induced 
type 1 diabetic mice. Collectively, these findings strongly 
suggest that the TFAM may be closely associated with 
diabetes mellitus. Further investigations subsequently 
elucidate the underlying mechanism. PGC-1α can induce 
NRF-1 expression, which, in turn, activates Tfam to 
directly regulate mitochondrial biogenesis (Hickey et  al. 
2011, Agrawal et  al. 2014). This association has been 
confirmed by the in vivo (Choi et  al. 2014) and in vitro 

(Yan et  al. 2013) results. Secondly, PGC-1α participates 
in insulin-stimulated glucose uptake in muscle cells by 
binding with the muscle-selective transcription factor 
MEF2C and coactivating it, thus controlling the level of 
GLUT4 expression (Michael et  al. 2001). The Gly482Ser 
polymorphism can weaken the binding of PGC-1α and 
MEF2C, thereby increasing the risk of T2DM in Chinese 
Han population (Lu et al. 2007). In a recently published 
study, Zhang and coworkers further propose the following 
molecular mechanism (Zhang et al. 2010): the region at 
400–500 amino acids of PGC-1α harbors a tetrapeptide. 
The region just distal to this tetrapeptide is required for 
coactivation of the GLUT4 via MEF2C. Hence, mutations 
in this region may decrease the transcription of GLUT4 
and dysregulate insulin-dependent glucose transportation 
in skeletal muscle cells, contributing to IR. Thirdly, 
plasma adiponectin concentration is inversely related to 
the risk of developing T2DM, IR, obesity, atherosclerosis 
and gastrointestinal malignancies. Recently, a decreased 
plasma adiponectin level has been associated with 
Gly482Ser polymorphism of the PGC-1α gene in Japanese 
type 2 diabetic men but not women (Okauchi et  al. 
2008). However, the mechanism behind the linkage 
disequilibrium is still not fully understood. Finally, Ha and 
coworkers report that lifestyle factors, including PA and 
body fat, may modulate the genetic effects of the PGC-1α 
Gly482Ser polymorphism on IR in Korean children (Ha 
et al. 2015). Despite some limitations, this cross-sectional 
study strongly suggests the association between PGC-1α 
polymorphisms and diabetes. 

Several other polymorphisms in PGC-1α gene are also 
reported to be associated with IR and T2DM. For example, 
the relationship between Thr394Thr variant and T2DM 
as well as its related mechanism is investigated in several 
populations. In Asian Indian population, the A allele of 
Thr394Thr (ACG→ACA) polymorphism is significantly 
associated with T2DM, and the XA genotype confers 
1.6 times higher risk for T2DM compared with the GG 
genotype in this population (Vimaleswaran et al. 2005). 
Subsequently in 2007, a replicate case–control study 
reported the effect of PGC-1α Thr394Thr and Gly482Ser 
variants on T2DM in two North Indian populations, 
obtaining the same results (Bhat et al. 2007). In addition, 
the PGC-1α Thr394Thr polymorphism can affect the 
therapeutic effect of rosiglitazone, an oral antidiabetic 
medicine that directly binds with PPARγ and activates it to 
reduce hepatic glucose output and to increase peripheral 
glucose disposal. A recent study reported that the 
Chinese T2DM patients with Thr394Thr polymorphism 
experienced a decreased therapeutic response than 
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patients with the wild-type genotype (Zhang et  al. 
2010). In order to elucidate the underlying mechanism 
of Thr394Thr variants, the bacterial two-hybrid system 
has been used in a study carried out in southern Chinese 
population. The results indicate that the 482Ser variant 
is less efficient than the 482Gly variant in binding with 
MEF2C, whereas the 394Thr (A) has a synergistic effect 
on the interaction between 482Ser variant and MEF2C 
(Zhang et al. 2007).

However, conflicting findings are reported on the 
relationship between the PGC-1α polymorphism and the 
risk of diabetes. For example, the Gly482Ser polymor-
phism of PGC-1α has no association with diabetes in 
French Caucasians and non-diabetic German and Dutch 
and Northern Chinese Han populations (Lacquemant 
et al. 2002, Chen et al. 2004, Stumvoll et al. 2004). It is 
also shown that Gly482Ser, Thr528Thr and Thr612Met 
polymorphisms in the PGC-1α gene are not associated 
with T2DM or body mass index among Hispanics and 
Non-Hispanic Whites from Colorado (Nelson et  al. 
2007). Explanations for these discrepancies may include 
differences in ethnic, genetic and environmental 
heterogeneity; gene pools; and sample size. In any case, 
further investigation is needed.

Conclusions and future perspectives

In summary, the current findings highlight the central 
role of PGC-1α in the regulatory network of glucose 
metabolism. Obviously, the expression and activity of 
PGC-1α are regulated by various cytokines, transcription 

factors, and other external stimuli via multiple intracellular 
signaling pathways. This complex pathway should be 
considered as a novel therapeutic strategy and potential 
pharmacological agent for T2DM treatment. However, 
it should be noted that PGC-1α not only is differentially 
expressed in different tissues but also has distinct and 
even opposite functions in different cells (Fig.  3). In 
addition, most of studies did not take into account the 
complex crosstalk between different signaling pathways. 
Further investigation is needed to determine the precise 
role of PGC-1α pathway in the T2DM, and it largely relies 
on the development of novel PGC-1α-targeting reagents 
and tissue-specific transgenic or knockout animal models.
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