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Abstract
Fibroblast growth factor 21 (FGF21) is an important regulator of hepatic glucose and lipid

metabolism and represents a potential pharmacological agent for the treatment of type 2

diabetes and obesity. Mice fed a ketogenic diet (KD) develop hepatic insulin resistance in

association with high levels of FGF21, suggesting a state of FGF21 resistance. To address the

role of FGF21 in hepatic insulin resistance, we assessed insulin action in FGF21 whole-body

knock-out (FGF21 KO) male mice and their littermate WT controls fed a KD. Here, we

report that FGF21 KO mice have hepatic insulin resistance and increased hepatic glucose

production associated with an increase in plasma glucagon levels. FGF21 KO mice are also

hypometabolic and display increased fat mass compared with their WT littermates.

Taken together, these findings support a major role of FGF21 in regulating energy

expenditure and hepatic glucose and lipid metabolism, and its potential role as a candidate

in the treatment of diseases associated with insulin resistance.
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Introduction
The prevalence of obesity has dramatically risen over the

last few decades and is not only affecting adults, but also

children and adolescents (Finucane et al. 2011). Based on

the National Health and Nutrition Examination Survey

(NHANES), it is estimated that more than 34% of adults are

obese and 68% are overweight or obese (Flegal et al. 2010).

In parallel with obesity, nonalcoholic fatty liver disease

(NAFLD), which is now the most prevalent chronic liver

disease in the USA, is affecting about one out of three

individuals (Williams et al. 2011). NAFLD is a major risk

factor in the development of insulin resistance and

type 2 diabetes (Angulo 2002, Fabbrini et al. 2010, Asrih

& Jornayvaz 2015).
Fibroblast growth factor 21 (FGF21) is an important

regulator of glucose metabolism (Kharitonenkov et al.

2005). FGF21 levels are increased in NAFLD and correlate

with hepatic triglyceride content (Li et al. 2010); therefore,

FGF21 is considered an emergent biomarker of NAFLD

(Dushay et al. 2010, Morris-Stiff & Feldstein 2010). In diet-

induced obese mice, which have already increased levels

of FGF21, suggesting a state of FGF21 resistance, chronic

administration of FGF21 reverses hepatic steatosis and

improves insulin sensitivity (Xu et al. 2009, Camporez

et al. 2013). Mice lacking Fgf21 (FGF21 knock-out (KO))

gain weight in an age-dependent manner, with an increase

in both fat and lean mass, and develop glucose intolerance
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on regular chow when assessed by intraperitoneal glucose

tolerance tests (Badman et al. 2009). When fed a ketogenic

diet (KD), FGF21 KO mice gain weight, develop NAFLD

and impaired glucose control (Badman et al. 2009),

although these findings have been questioned (Murata

et al. 2013). Also, mice specifically lacking Fgf21 in the

liver fed a high-fat diet have recently been shown to

develop significant hepatic steatosis and insulin

resistance when assessed by an insulin tolerance test

(Markan et al. 2014).

We previously showed that WT mice fed a KD develop

hepatic insulin resistance despite gaining less weight than

mice fed regular chow. In this case, hepatic insulin

resistance was secondary to the accumulation of diacyl-

gycerols (DAG), which are lipid intermediates known to

activate protein kinase C epsilon (PKC3), which sub-

sequently impairs insulin signaling (Samuel et al. 2007).

Lower body weight in mice fed a KD was secondary to

higher energy expenditure, which was attributed to an

increase in FGF21 plasma concentrations, as caloric intake

and locomotor activity were similar (Jornayvaz et al. 2010).

We therefore hypothesized that FGF21 KO mice would

have lower energy expenditure and develop more hepatic

insulin resistance compared to WT mice when fed a KD. In

order to examine this hypothesis, we assessed whole-body

glucose turnover in awake mice using the hyperinsuline-

mic–euglycemic clamp technique combined with radio-

labeled glucose, and energy expenditure by indirect

calorimetry. In addition, we assessed liver lipid intermedi-

ates that have been associated with insulin resistance,

such as triglycerides, DAG, and ceramides (Shulman 2000,

Holland et al. 2007, Samuel et al. 2010, Jornayvaz &

Shulman 2012), as well as signaling events typically

associated with an increase in liver DAG content. Finally,

given the well-established associations between endoplas-

mic reticulum (ER) stress and inflammation with insulin

resistance (Ozcan et al. 2004, Hotamisligil 2006, 2010),

we also assessed these pathways in FGF21 KO mice.
Materials and methods

Animals

Male FGF21 KO mice and WT littermates were generated

as previously described (Potthoff et al. 2009) and indivi-

dually housed under controlled temperature (23 8C) and

lighting (12 h light:12 h darkness cycle, lights on at

0700 h) with free access to water and food. One week

after arrival in the animal care facility, a KD (F3666,

Bio-Serv, Frenchtown, NJ, USA) was started and continued
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0136 Printed in Great Britain
for 5 weeks. The proportions of calories derived from

nutrients were as follows: 95.1% fat, 0.4% carbohydrate,

4.5% protein, and energy density 7.456 kcal/g. Body

composition was assessed by 1H magnetic resonance

spectroscopy using a Bruker Minispec Analyzer (Bruker

BioSpin, Billerica, MA, USA). Energy expenditure, RQ,

VO2, VCO2, locomotor activity, and food intake were

measured using a Comprehensive Lab Animal Metabolic

System (CLAMS; Colombus Instruments, Columbus, OH,

USA). Drinking was measured as previously described

(Birkenfeld et al. 2011). Mice were w3 months old during

the experiments. All experiments were done in 6-h fasted

animals. All procedures were approved by the Yale

University Animal Care and Use Committee.
Plasma assays

Blood samples were collected by cardiac puncture in

heparinized syringes and centrifuged at 10,000 g for

2 min. Plasma was then either directly used or frozen at

K20 8C for further analyzes. Plasma glucose (10 ml/sample)

was measured using a YSI 2700D glucose analyzer

(YSI, Inc., Yellow Springs, OH, USA). Plasma fatty acids

were determined with the NEFA C Kit (Wako Pure

Chemical Industries, Osaka, Japan). Plasma insulin,

glucagon, and adiponectin were measured by RIA Kits

(Millipore, Billerica, MA, USA). For glucagon measure-

ments, aprotinin was added to the blood during collection

to avoid degradation. Cholesterol panel was analyzed

using COBAS Mira Plus (Roche). Plasma cytokines were

measured using a mouse multiplex assay kit (Meso Scale

Discovery, Gaithersburg, MD, USA).
Liver lipid intermediates measurements

Tissue triglycerides were extracted using the method of

Bligh & Dyer (1959) and measured using a commercial

triglyceride reagent (Diagnostic Chemicals Limited,

Oxford, CT, USA). Cytosolic DAG were measured as

previously described (Yu et al. 2002, Jornayvaz et al.

2011). Total DAG contents are expressed as the sum of

individual species. Ceramides content was measured as

previously described (Yu et al. 2002).
Hepatic glycogen measurements

Frozen livers were homogenized in perchloric acid.

Glucose concentration was measured (YSI 2700D glucose

analyzer; YSI, Inc.) in the raw homogenates and in

hydrolyzed homogenates after the addition of
Published by Bioscientifica Ltd.
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amyloglucosidase from Aspergillus niger (Sigma–Aldrich).

Results are expressed as mg of glycogen per 100 mg

of tissue.
Hyperinsulinemic–euglycemic clamp studies

Jugular venous catheters were implanted 6–7 days prior to

the hyperinsulinemic–euglycemic clamp experiments.

Hyperinsulinemic–euglycemic clamps were conducted as

previously described (Jornayvaz et al. 2011). Briefly, after

overnight fasting, restrained mice were infused with

[3-3H]-glucose at a rate of 0.05 mCi/min for 120 min to

measure basal glucose turnover. After the basal period,

hyperinsulinemic–euglycemic clamp was performed

for 120 min with a 4-min primed insulin (20 mU/kg)

followed by a continuous infusion (3 mU/kg per min).

[3-3H]-glucose was infused at a rate of 0.1 mCi/min and

20% dextrose was infused in variable rates to maintain

euglycemia (w120 mg/dl). 10 mCi bolus of 2-deoxy-

D-[1-14C]glucose (Perkin Elmer Life Sciences, Boston, MA,

USA) was injected after 85 min to estimate the insulin-

stimulated tissue glucose uptake. Blood samples were

collected by tail bleeding (at 0, 25, 50, 65, 80, 90, 100,

110, and 120 min). Clamps were performed according to

standard operating procedures (Ayala et al. 2010). At the

end of the clamp, mice were anesthetized with pento-

barbital sodium injection (150 mg/kg) and all tissues were

taken within 4 min, snap–frozen in liquid nitrogen using

aluminum tongs and stored at K80 8C for subsequent

analysis. Biochemical analysis and calculations for the

hyperinsulinemic–euglycemic clamps were performed as

previously described (Jornayvaz et al. 2011).
Liver insulin signalling

PKC3 membrane activation was assessed in liver protein

extracts as previously described (Choi et al. 2007).
Immunoblot analysis

Immunoblots were done as previously described (Jor-

nayvaz et al. 2012). Membranes were incubated overnight

with primary antibodies for phospho-Akt2 (Ser474) (Cell

Signaling Technology, Danvers, MA, USA), phosphoenol-

pyruvate carboxykinase (PEPCK; Abcam, Cambride, MA,

USA), pyruvate carboxylase (PC; Abcam), uncoupling

protein 1 (UCP1; Santa Cruz Biotechnology), C/EBP

homologous protein (CHOP; Cell Signaling Technology),

IgH chain binding protein (BIP; Cell Signaling Tech-

nology), phospho-eIF2a (Cell Signaling Technology), or
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0136 Printed in Great Britain
phospho-JNK (Cell Signaling Technology). After further

washings, membranes were incubated with HRP-conju-

gated secondary antibody (Bio-Rad) and visualized by ECL

substrate (Pierce, Rockford, IL, USA). Membranes were

stripped and reblotted with anti-total Akt antibody (Cell

Signaling Technology), total eIF2a (Cell Signaling Tech-

nology), total JNK (Cell Signaling Technology), or glycer-

aldehyde-3-phosphate dehydrogenase (Santa Cruz

Biotechnology). Bands were then quantified using ImageJ

(National Institutes of Health, Bethesda, MD, USA).
Total RNA preparation, real-time quantitative PCR analysis

Total RNA was extracted from frozen livers using RNeasy

96-Kit (Qiagen). Then, 1 mg of RNA was reverse-transcribed

into cDNA with the use of the Quantitect RT Kit (Qiagen)

as per manufacturer’s protocol. The abundance of tran-

scripts was assessed by real-time PCR on a 7500 Real-Time

PCR System (Applied Biosystems) with a SYBR Green

detection system. Samples were run in duplicate for both

the gene of interest and cyclophilin, and data were

normalized for the efficiency of amplification according

to Pfaffl’s equation (Pfaffl 2001), as determined by a

standard curve included on each run. Primers used are

available upon request.
Statistical analysis

Data are expressed as meansGS.E.M. Results were assessed

using two-tailed unpaired Student’s t-test or one-way

ANOVA (GraphPad Prism 5, La Jolla, CA, USA). A P value

!0.05 was considered significant.
Results

Decreased energy expenditure in FGF21 KO mice

Body weights of FGF21 KO mice studied at w3 months

of age were not significantly different than their WT

littermate controls. Body fat expressed as a percentage of

body weight was w40% higher in FGF21 KO mice and

there was no difference in their percent lean mass

compared to controls (Table 1). However, when expressed

in grams, lean mass was significantly lower in FGF21 KO

mice (Table 1). VO2 (Fig. 1A) and VCO2 (Fig. 1B) were

w15% lower and energy expenditure was w10% lower

(Fig. 1C) in FGF21 KO mice than WT mice. Importantly,

locomotor activity and caloric intake were similar between

genotypes, as were respiratory quotient and drinking

(Table 1). In accordance with the decrease in energy
Published by Bioscientifica Ltd.
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Table 1 Physiologic parameters and plasma analyses. Data are

represented as meanGS.E.M.

WT FGF21 KO

Physiological parameters
Body weight (g) 23.1G0.6 21.2G0.7
Fat mass (g) 2.0G0.1 2.6G0.3
Lean mass (g) 16.9G0.5 15.1G0.4*
Fat mass (% of body weight) 8.8G0.5 12.0G0.3*
Lean mass (% of body weight) 73.2G0.6 71.6G1.1
Caloric intake per mouse
(kcal/(mouse-h))

0.57G0.06 0.49G0.06

RQ 0.73G0.00 0.73G0.00
Drinking (ml/(mouse-h)) 0.01G0.00 0.01C0.00
Activity (counts/h) 65.6G10.8 80.9G13.8

Plasma analyses
Fasting insulin (mU/ml) 9.9G1.7 15.4G4.6*
Clamp insulin (mU/ml) 61.3G12.2 73.1G8.3
Fasting glucagon (pg/ml) 118.7G38.6 245.1G23.0*
Fasting FA (mmol/l) 1.3G0.2 1.7G0.4*
Insulin-stimulated FA (mmol/l) 0.5G0.1 0.8G0.2*
Insulin suppression of FA (%) 63.0G5.5 54.4G6.8*
Total cholesterol (mg/dl) 181.6C20.2 291.7G20.3†

HDL cholesterol (mg/dl) 94.0G4.3 98.8G2.4
Triglycerides (mg/dl) 57.7G6.7 83.1G17.3
Adiponectin (mg/ml) 9.8G1.1 10.4G0.6
Interleukin 1 beta (pg/ml) 1.6G0.7 5.8G1.5‡

Interferon gamma (pg/ml) 1.0G0.2 1.1G0.1
Interleukin 6 (pg/ml) 6.6G0.7 8.2G2.3
Interleukin 10 (pg/ml) 43.2G1.6 50.3G3.4
Tumor necrosis factor alpha
(pg/ml)

5.9G0.5 6.4G0.5

RQ, respiratory quotient; FA, fatty acids. nZ4–12 mice/group. *P!0.05 and
†P!0.01 vs WT. ‡PZ0.08 vs WT.
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expenditure, we found that protein levels of UCP1 in

brown adipose, which is the main protein dissipating heat

in the brown adipose tissue, was significantly reduced in

FGF21 KO mice (Fig. 1D), corroborating the role of FGF21

in inducing UCP1 gene expression in brown adipose tissue

(Fisher et al. 2012). Finally, basal plasma analyses revealed

an w60% increase in total cholesterol in FGF21 KO,

whereas there was no difference in HDL cholesterol and

triglycerides (Table 1), suggesting a role for FGF21 in

cholesterol metabolism.

0.00.0E

n

UCP1

GAPDH

W
T KO

W
T KO

W
T KO

W
T KO

Figure 1

Decreased energy expenditure in FGF21 KO mice. VO2 (A), VCO2 (B), and

energy expenditure per mouse (C) were significantly lower in FGF21 KO

mice (nZ10–12/group). Accordingly, the protein level of UCP1 (D) was

significantly decreased in FGF21 KO mice (nZ4–5/group). *P!0.05 vs WT

mice. Data are represented as meanGS.E.M.
Hepatic insulin resistance in FGF21 KO mice

We performed hyperinsulinemic–euglycemic clamps to

assess hepatic and peripheral insulin sensitivity. Glucose

infusion rates required to maintain euglycemia (Fig. 2A)

during the clamps were w30% lower in FGF21 KO mice

compared to WT mice, demonstrating whole-body insulin

resistance in FGF21 KO mice (Fig. 2B). Basal endogenous

glucose production was w20% higher in FGF21 KO mice

(Fig. 2C) without any difference in basal plasma glucose,
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0136 Printed in Great Britain
whereas the suppression of endogenous glucose pro-

duction by insulin during the clamp was w60% lower in

FGF21 KO mice (Fig. 2D), reflecting severe hepatic insulin

resistance. However, insulin-stimulated whole-body

glucose disposal (Fig. 2E) was similar between genotypes,

demonstrating that the differences in whole-body glucose

turnover were due specifically to hepatic insulin resistance

in FGF21 KO mice. Basal plasma fatty acid concentrations

were w30% higher in FGF21 KO mice and the ability of

insulin to suppress plasma fatty acid concentrations

during the hyperinsulinemic–euglycemic clamps was

also significantly decreased in FGF21 KO mice (Table 1),

suggesting that insulin suppression of white adipose

tissue lipolysis was also impaired in these mice. Fasting

plasma insulin concentrations were w55% higher in

FGF21 KO mice, whereas insulin concentrations during
Published by Bioscientifica Ltd.
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Figure 2

Hepatic insulin resistance in FGF21 KO mice. (A) Glucose was maintained

around 100–120 mg/dl during the hyperinsulinemic–euglycemic clamps.

Glucose infusion rates (B) were significantly lower in FGF21 KO mice

compared to their WT littermate controls. Basal endogenous glucose

production (C) was higher in FGF21 KO mice. FGF21 KO mice displayed

hepatic insulin resistance as reflected by the inability of insulin to suppress

endogenous glucose production during the hyperinsulinemic–euglycemic

clamps (D). Insulin-stimulated whole-body glucose disposal (E) was similar

between groups (nZ9–10/group). *P!0.05 vs WT mice. Data are

represented as meanGS.E.M.
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the clamp were similar between genotypes (Table 1),

which is important to allow clamp data comparisons

between groups.

To assess the role of FGF21 deficiency in insulin

resistance in vitro, we measured FGF21 expression in

HepG2 cells in basal conditions and found that it was

very low (data not shown), suggesting that knocking down

FGF21 would have little effect in these cells. These findings

are in line with previous studies in different hepatic cell

lines (Potthoff et al. 2009, Wang et al. 2010, Schaap et al.

2013) and overall suggest that the role of FGF21 in insulin

resistance is more relevant in in vivo systems.
NAFLD and impaired hepatic insulin signaling in

FGF21 KO mice

FGF21 KO mice, like WT mice, develop NAFLD when fed

a KD. However, liver lipid intermediates, triglycerides

(Fig. 3A), cytosolic DAG (Fig. 3B), and ceramides (Fig. 3C)

were all significantly higher in FGF21 KO mice. The

increase in hepatic DAG content was associated with

a significant increase in PKC3 membrane translocation

(Fig. 3D) and a subsequent w10% decrease in phospho-

Akt2 phosphorylation (Fig. 3E), confirming hepatic

insulin resistance in FGF21 KO mice downstream of the

insulin receptor.

The interaction of FGF21 with b-klotho is necessary

for its biological action (Kharitonenkov & Larsen 2011,

Ding et al. 2012). We therefore assessed part of FGF21

signaling in the liver. Interestingly, although mice fed a

KD are known to display altered FGF21 signaling

compared to mice fed regular chow (Asrih et al. 2015),

we found no difference in b-klotho (Supplementary

Figure 1A, see section on supplementary data given at

the end of this article), FGF receptor 1 (Supplementary
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0136 Printed in Great Britain
Figure 1B), and 4 (Supplementary Figure 1C) hepatic

mRNA expression.
ER stress and inflammation in FGF21 KO mice

ER stress and inflammation are also considered as

alternative hypotheses to explain hepatic insulin resist-

ance (Ozcan et al. 2004, Hotamisligil 2006, Asrih &

Jornayvaz 2013). We therefore examined several markers

of these pathways. Hepatic protein levels of CHOP

(Fig. 4A), BIP (Fig. 4B), two important markers of ER stress,

were similar between groups. However, phospho-eIF2a,

another ER stress marker, was increased by w35% in

FGF21 KO mice (Fig. 4C). Protein levels of phospho-JNK,

an important marker of inflammation, were similar

between groups (Fig. 4D). Additionally, concentrations

of plasma cytokines, namely interleukin 6 (IL6), interferon

gamma, IL10, and tumor necrosis factor alpha were not

different between FGF21 KO and WT mice (Table 1).

However, IL1b tended to be higher in FGF21 KO mice

(PZ0.08; Table 1). Finally, adiponectin, which has been

suggested to activate ceramide catabolism (Holland et al.

2011), as well as mediate part of FGF21 metabolic effects

(Holland et al. 2013, Lin et al. 2013), although this has

been recently challenged (Muise et al. 2013, Markan et al.

2014), was similar between groups (Table 1).
Increased hepatic gluconeogenesis in FGF21 KO mice

In order to understand why FGF21 KO mice had a higher

basal endogenous glucose production than WT mice, we

assessed different enzymes involved in gluconeogenesis.

Of note, Fgf21 mRNA expression was decreased in FGF21

KO mice, according to their genotype (Fig. 5A). The

expression of peroxisome proliferator activated receptor

gamma coactivator 1 alpha (Pgc1a) was not significantly
Published by Bioscientifica Ltd.
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NAFLD and impaired hepatic insulin signaling in FGF21 KO mice. (A, B and

C) Liver triglycerides (A), cytosolic DAG content (B), and ceramides content

(C) were significantly increased in FGF21 KO mice (nZ8–10/group).

Consequently, PKC3 was significantly translocated to the membrane (D) in

FGF21 KO mice and insulin-stimulated Akt2 phosphorylation was decreased

(E) (nZ4–5/group). *P!0.05, **P!0.01 and ***P!0.001 vs WT mice.

Data are represented as meanGS.E.M.
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ER stress and inflammation in FGF21 KO mice. Major markers of ER stress,

CHOP (A) and BIP (B) were not different between FGF21 KO and WT mice,

whereas phospho-elF2a (C) was significantly higher in FGF21 KO mice.

Phospho-JNK (D) was not different between genotypes (nZ4–5/group).

*P!0.05 vs WT mice. Data are represented as meanGS.E.M.
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altered, nor were mRNA expression of Pepck, Pc, and

glucose-6-phosphatase (G6pase) (Fig. 5A). However, at the

protein level, we found a significant increase in the

expression of PEPCK (Fig. 5B), but not PC (Fig. 5C), in

FGF21 KO mice. In association with these findings and the

increased hepatic glucose production in FGF21 KO mice,

plasma glucagon concentrations were more than twofold

higher in FGF21 KO mice (Table 1). Finally, we found a
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0136 Printed in Great Britain
decrease in hepatic glycogen content in FGF21 KO mice

(Fig. 5D), suggesting a decrease in glycogen synthesis or

an increase in glycogenolysis.
Discussion

FGF21 is rapidly gaining attention as a potent metabolic

regulator that affects both glucose and lipid metabolism

and reduces body weight and fat mass in numerous animal

models of insulin resistance and obesity (Kharitonenkov

et al. 2005, 2007, Coskun et al. 2008, Berglund et al. 2009,

Xu et al. 2009, Camporez et al. 2013). FGF21 plasma

concentrations are also correlated with insulin resistance

in humans when assessed by the hyperinsulinemic–

euglycemic clamp technique (Chavez et al. 2009), which

represents the gold standard to evaluate insulin

sensitivity. FGF21 also emerges as a biomarker of NAFLD

(Li et al. 2010, Morris-Stiff & Feldstein 2010), a highly

prevalent disease in western countries. These findings of

increased FGF21 levels in humans with insulin resistance

actually suggest a state of FGF21 resistance. Nevertheless,

these findings also suggest that giving supra-physiological

doses of FGF21 could be used for the treatment of

insulin resistance and other aspects of the metabolic

syndrome in humans (Kliewer & Mangelsdorf 2010).
Published by Bioscientifica Ltd.
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Increased hepatic gluconeogenesis in FGF21 KO mice. According to their

genotypes, mRNA level of Fgf21 (A) were significantly decreased in FGF21

KO mice. There was no difference in the mRNA expression of Pgc1a, Pepck,

Pc, and G6pase between FGF21 KO and WT mice (A) (nZ6/group). However,
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Notably, a promising study in obese type 2 diabetic

patients using FGF21 analogs during 28 days reported a

trend in decreased plasma glucose levels and changes in

plasma insulin levels, suggesting improved insulin sensi-

tivity (Gaich et al. 2013).

Here, we report that mice lacking Fgf21 have severe

hepatic insulin resistance when fed a KD compared with

WT controls, when assessed by the gold-standard tech-

nique, the hyperinsulinemic–euglycemic clamp. Our

results are consistent with a previous report of glucose

intolerance in FGF21 KO mice, although the intraperito-

neal glucose tolerance tests were not done in body weight-

matched animals (Badman et al. 2009), which does not

represent ideal conditions (Ayala et al. 2010) and does not

distinguish hepatic vs peripheral insulin sensitivity

directly. Our results are also in line with a recent study
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0136 Printed in Great Britain
showing impaired insulin sensitivity assessed by insulin

tolerance tests in mice specifically lacking Fgf21 in the

liver (Markan et al. 2014). However, another group

recently reported opposite findings, i.e., improved glucose

tolerance using intraperitoneal glucose tolerance tests in

FGF21 KO mice (Murata et al. 2013). The reasons for this

are unclear, but could be due to a different line of mice, the

different KD used, as well as the different duration of KD

feeding, which was only 6 days in the study by Murata

et al. (2013), therefore contrasting with previous studies

(Badman et al. 2009, Jornayvaz et al. 2010), including ours.

Moreover, their mice did not develop fatty liver on a KD,

as opposed to our results and those of others (Badman et al.

2009, Markan et al. 2014).

Insulin resistance in our FGF21 KO mice was associ-

ated with an almost threefold increase in hepatic cytosolic

DAG content leading to PKC3 activation, resulting in

decreased insulin signaling as shown by decreased Akt2

phosphorylation, confirming the known impairment

of insulin signaling by PKC3 activation (Jornayvaz &

Shulman 2012). Hepatic ceramide content was also

slightly increased (w15%) which may have also contrib-

uted to the hepatic insulin resistance observed in these

mice. Also, increased basal plasma concentrations of fatty

acids and impaired suppression by insulin might have

played a role in the development of insulin resistance in

FGF21 KO mice. This suggests that FGF21 is required to

inhibit lipolysis in white adipose tissue and is consistent

with previous findings (Arner et al. 2008, Hotta et al. 2009,

Li et al. 2009, Murata et al. 2013). For these experiments,

we decided to feed mice a KD because we previously

reported that such a diet induces hepatic insulin resistance

in WT mice with high plasma levels of FGF21 (Jornayvaz

et al. 2010), consistent with the elevation of FGF21 seen in

insulin resistance in humans (Chavez et al. 2009) and mice

(Fisher et al. 2010, Jornayvaz et al. 2010). As WT mice are

insulin resistant when fed a KD, we now show that mice

lacking Fgf21 are even more insulin resistant when fed the

same diet. However, these studies raise the question as to

whether the increase in FGF21 on a KD contributes to the

development of insulin resistance or if it is a counter

regulatory mechanism to promote the use of lipids during

this challenge. Our experiments test this directly and show

that FGF21 provides some level of protection against

insulin resistance. However, the increase in FGF21,

whether mice are fed a KD (Jornayvaz et al. 2010) or a

high-fat diet (Fisher et al. 2010), is insufficient to protect

against insulin resistance. However, KD has been shown to

increase FGF21 levels because FGF21 is an endocrine signal

of protein restriction (Laeger et al. 2014). KD can therefore
Published by Bioscientifica Ltd.
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increase FGF21 independently of insulin resistance. The

increase in hepatic lipid content in FGF21 KO mice is

consistent with a role of FGF21 in the regulation of hepatic

lipid metabolism (Badman et al. 2007). Specifically, mice

lacking Fgf21 fed a KD are known to have an increase in

hepatic protein levels of sterol regulatory binding protein

element 1c (SREBP1c; Badman et al. 2009), a master

regulator of lipid synthesis.

Interestingly, when fed a KD, FGF21 KO mice had a

decrease in energy expenditure, and this is a likely

explanation of why their body weight increases with age.

These results confirm data from previous reports where

FGF21 was shown to act as a regulator of energy

metabolism (Coskun et al. 2008, Xu et al. 2009, Camporez

et al. 2013). The effect of FGF21 on energy expenditure is

likely to be direct, as we found no difference in locomotor

activity, food consumption, or respiratory quotient.

Moreover, we found that the level of UCP1, the main

protein dissipating heat at the level of the brown adipose

tissue, was significantly reduced in FGF21 KO mice.

However, by surgically removing brown adipose tissue,

we previously showed that FGF21 can also increase energy

expenditure independently of brown adipose tissue,

notably in white adipose tissue, suggesting that FGF21

can increase energy expenditure in other organs

(Camporez et al. 2013).

We also found evidence of a potential role of FGF21 on

ER stress as evidenced by an increase in phospho-eIF2a.

Phospho-eIF2a, an important marker of ER stress, was

significantly increased in FGF21 KO mice. It is not clear

why this marker of ER stress of the PERK arm was increased,

whereas CHOP, another ER stress marker from the PERK

arm, was not. However, this elevation may be secondary to

higher fat content in the liver of FGF21 KO mice compared

to WT mice. Moreover, this corroborates findings in obese

non-diabetic patients with NAFLD (Kumashiro et al. 2011).

Finally, adiponectin, which is thought to mediate insulin

sensitivity by activating ceramidase activity (Holland et al.

2011) and has recently been shown to mediate part of

FGF21 metabolic actions (Holland et al. 2013, Lin et al.

2013), was not different between groups and was therefore

unlikely to play a major role in the hepatic insulin

resistance seen in mice lacking Fgf21. These findings are

therefore in line with recent studies suggesting that other

factors than adiponectin mediate FGF21 effects (Muise

et al. 2013, Markan et al. 2014).

An important finding here was that mice lacking Fgf21

had an increase in endogenous glucose production, which

can be the result of both increased gluconeogenesis and/or

glycogenolysis. We found no difference in the mRNA
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0136 Printed in Great Britain
expression of major gluconeogenic enzymes, but found a

significant increase in PEPCK protein level, providing

evidence for increased gluconeogenesis. It is not surprising

that mRNA levels were not altered, as it has been shown

that increased transcriptional expression of Pepck does not

account for increased gluconeogenesis and fasting hyper-

glycemia in patients with type 2 diabetes. Indeed, hepatic

expression of Pepck was not different between insulin

sensitive and type 2 diabetic subjects (Samuel et al. 2009).

Interestingly, a study reported in vitro in Hepa1–6

hepatocytes that downregulation of Fgf21 increases Pepck

expression, whereas upregulation of Fgf21 decreases Pepck

(Li et al. 2012). The latter finding was further confirmed in

the rat H4IIE hepatoma cell line (Kong et al. 2013).

Therefore, other mechanisms associated with lack of Fgf21

that have yet to be unraveled potentially affect the post-

transcriptional modification of PEPCK, which suggests

that FGF21 plays an important role in gluconeogenesis.

We also report decreased hepatic glycogen content in

FGF21 KO mice, which could reflect decreased glycogen

synthesis or increased glycogenolysis. The latter would be

more likely, based on the increased endogenous glucose

production evidenced in FGF21 KO mice, and is further

corroborated by the higher plasma glucagon levels in these

mice, although these findings remain associative. This

increase in plasma glucagon levels contrasts with previous

reports (Badman et al. 2009, Potthoff et al. 2009, Murata

et al. 2013), but might reflect the different diet used and

the duration of the diet. Also, glucagon is rapidly

destroyed in plasma; we therefore used aprotinin during

blood collection to avoid degradation of the hormone.

However, our results mirror findings in mice overexpres-

sing Fgf21, where plasma glucagon levels were signi-

ficantly lower in females and tended to be lower in

males (Kharitonenkov et al. 2005). This increase in

glucagon might be a compensatory mechanism to increase

FGF21 concentrations, as recent findings reported that

glucagon increases FGF21 levels (Arafat et al. 2013), further

mediating glucagon actions (Habegger et al. 2013), but

these considerations remain speculative, as we have no

direct evidence. Nevertheless, glucagon levels have been

reported to be lowered after FGF21 injections in ob/C

(Berglund et al. 2009) and db/db mice (Mu et al. 2012), as

well as in diabetic monkeys (Kharitonenkov et al. 2007)

and in isolated rat pancreatic islets (Kharitonenkov et al.

2005). Finally, the increased basal plasma insulin concen-

trations in FGF21 KO mice may be secondary to the

increased endogenous glucose production.

In conclusion, the present study demonstrates that

mice specifically lacking Fgf21 develop hepatic insulin
Published by Bioscientifica Ltd.
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resistance when fed a KD, thereby involving FGF21 as a

regulator of hepatic insulin resistance. In this case, hepatic

insulin resistance can be attributed to an increase in

hepatic DAG content, leading to PKC3 activation and

subsequent impaired insulin signaling. Taken together,

these findings support the hypothesis that FGF21 plays a

key role in NAFLD-associated hepatic insulin resistance

and provide new support of FGF21 as a pharmacological

candidate in insulin resistance and associated diseases.
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