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Abstract
Metabolic profiling, or metabolomics, has developed into a mature science in recent years.

It has major applications in the study of metabolic disorders. This review addresses issues

relevant to the choice of the metabolomics platform, study design and data analysis in

diabetes research, and presents recent advances using metabolomics in the identification of

markers for altered metabolic pathways, biomarker discovery, challenge studies, metabolic

markers of drug efficacy and off-target effects. The role of genetic variance and intermediate

metabolic phenotypes and its relevance to diabetes research is also addressed.
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Introduction
Metabolic profiling, or metabolomics, aims at determining

all relevant small molecules (metabolites) in a biological

sample (Pauling et al. 1971). Recent technology advances

have allowed the characterization of hundreds of meta-

bolites from a small amount of blood or urine in a single

experiment (Nicholson et al. 1999). The metabolic profile

of an individual patient, a lab animal, or even a cell culture

provides a functional readout of its current metabolic state

(Griffin et al. 2001, Fiehn 2002, Nicholson et al. 2002,

Bain et al. 2009). Metabolomics can thus be viewed as the

equivalent to an ‘imaging approach’ for the biochemical

processes that occur within an organism. The biochemical

knowledge that has been accumulated in over a century of

individual experiments on cells and tissue cultures

provides a thorough basis for the interpretation of

perturbations in the metabolic state of a patient and of

the underlying metabolic connections inside the human

body, as they are revealed by studies of metabolic profiling

in diabetes (German et al. 2005, Wenk 2005). Application

of metabolomics approaches to metabolic disorders,

especially diabetes, is particularly promising since dereg-

ulations of metabolic processes are expected to be directly
related to relevant disease end-points. Friedrich (2012)

recently reviewed current findings of metabolic research

regarding diabetes in animal models and humans in this

journal. I therefore first give an introduction to meta-

bolomics with an update on current diabetes studies using

metabolomics (Table 1), followedby a focuson study design

considerations, current challenges and future directions

of metabolic profiling, and how metabolomics can be

applied most successfully in diabetes research (Table 2).

Today, two fundamentally different techniques are

mainly used to obtain metabolomics data on larger sets of

samples: mass spectrometry (MS) and proton (1H) nuclear

magnetic resonance (NMR) spectroscopy (Nicholson &

Lindon 2008). Both techniques have their strengths and

weaknesses. MS-based methods are in general more

sensitive, but they are also more complex in their

implementation with a higher risk of generating technical

artifacts and measurement errors. NMR-based methods are

more robust and straightforward to implement, cheaper,

faster, and especially the reproducibility of NMR spectra

is excellent. While MS calls for complex sample extrac-

tion methods, NMR requires higher sample volumes.

http://joe.endocrinology-journals.org
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Table 1 Selected human metabolomics studies with diabetes-related phenotypes

Metabolomics method Experimental model Key results Reference

Cross-sectional studies
Targeted metabolomics Incident type 2 diabetes

(T2D)
Plasma phospholipid markers of T2D Wang et al. (2005)

Targeted metabolomics Lean/obese with insulin
resistance

Branched-chain amino acids (BCAAs) differ-
entiate obese and lean individuals and
contribute to insulin resistance

Newgard et al.
(2009)

Non-targeted metabolomics Euglycemic clamp a-hydroxybutyrate (AHB) and linoleoylglycero-
phosphocholine (L-GPC) are early markers for
insulin resistance

Gall et al. (2010)

Multi-platform metabolomics Incident T2D Diabetes-associated perturbations of metabolic
pathways are detectable under subclinical
conditions

Suhre et al. (2010)

Non-targeted metabolomics Incident T2D Metabolomic profiles reflective of glucose
homeostasis in nondiabetic and T2D obese
African–American women

Fiehn et al. (2010)

1H NMR metabolomics HOMA-IR (patients with T2D
were excluded)

Metabolic signatures of insulin resistance in
young adults

Würtz et al. (2012)

Non-targeted metabolomics Incident T2D and impaired
fasting glucose

Confirms the role of catabolism of BCAAs in
T2D and impaired fasting glucoseCnew
markers

Menni et al. (2013)

Non-targeted metabolomics Incident T2D, multi-matrix
(saliva, plasma, urine)

1,5-anhydroglucitol (1,5-AG) in saliva is a
noninvasive marker of short-term glycemic
control

Mook-Kanamori
et al. (2014)

Prospective studies
Non-targeted metabolomics
(targeted for replication)

Individuals who developed
T2D over 12 years

BCAAs are predictive of diabetes Wang et al. (2011)

Targeted metabolomics Individuals who developed
insulin resistance or T2D
over 7 years

Glycine and L-GPC are predictors of impaired
glucose tolerance and of T2D

Wang-Sattler et al.
(2012)

Non-targeted metabolomics Two cohorts (3 and 9.5 years
follow-up) with diverse
diabetes relevant traits

AHB and L-GPC are independent predictors of
impaired glucose tolerance

Ferrannini et al.
(2013)

Targeted metabolomics Two cohorts with a 7-year
follow-up and diabetes
relevant traits

Sugar metabolites, amino acids, and
choline-containing phospholipids are
independently associated with risk of T2D

Floegel et al.
(2013)

Non-targeted metabolomics Individuals who developed
T2D over 12 years

2-aminoadipic acid is a biomarker for
diabetes risk

Wang et al. (2013)
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MS is most often coupled to additional gas- or liquid-phase

chromatography separation steps (GS–MS and LC–MS)

that allow for the stratification of complex mixtures. As a

consequence, MS-based methods provide an overall larger

number of molecules that can be quantified, but they also

require longer measurement times. Identification of the

biochemical identity of molecules in MS is achieved either

based on high mass-resolution (Aharoni et al. 2002) or

using known fractionation pattern (tandem MS; Evans

et al. 2009), while in NMR this step requires the

deconvolution of complex NMR spectra (Weljie et al.

2006). Both methods can also generate data for metabolites

ofwhich the identity is initially unknown.Theseunknowns

may eventually be identified using additional analytical

methods and thereby can provide new insights into the

studied phenotype or disease (Krumsiek et al. 2012).

Depending on the objective, targeted or non-targeted

metabolomics approaches may be favored. Targeted
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-14-0024 Printed in Great Britain
approaches focus on a specific subset of the metabolome

and provide data only on a predefined set of molecules,

while non-targeted metabolomics approaches allow for

the discovery of new molecules that associate with the

phenotype under investigation. Targeted approaches

typically attempt to quantify the measured metabolites

on an absolute scale, using external or internal standards

as a reference, while non-targeted approaches provide

only semi-quantitative measures, such as ion counts or

areas under a curve using arbitrary units. Targeted

methods with absolute quantification have the advantage

that measurements from different studies can be easily

combined and compared. They typically have lower

technical variance since more time can be spent on

measuring a smaller set of metabolic features. However,

discovery of new processes and pathways is more likely

to be done using non-targeted methods, aiming at

measuring the widest possible range of metabolites.
Published by Bioscientifica Ltd.
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Table 2 Examples of application of metabolomics in diabetes research

Application Example

Diagnostic biomarker discovery 1,5-AG is a marker of short-term glycemic control (Yamanouchi, et al. 1996)
Prognostic biomarker discovery Branched chain amino acids are predictive of insulin resistance (Wang et al. 2011)
Elucidation of disease pathways Identification of the role of solute carriers in the physiological response to glucose

challenge (Deo et al. 2010)
Identification of drug side effects Methylglutaryl carnitine is oppositely affected by rosiglitazone treatment in diabetic

and WT mice (Altmaier et al. 2008)
Functional biomarker for drug action Ratios between specific phospholipid species are markers for FABP4 inhibition

(Suhre et al. 2011a)
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The Human Metabolome Database (Wishart et al.

2013), which is probably the largest and most compre-

hensive metabolomics database available to date (http://

www.hmdb.ca/), contains over 40 000 entries. Note,

however, that this number includes an important

number of ‘expected’ metabolites. These are small

molecules that have been predicted to exist based on

the metabolic capabilities of known metabolic pathways,

but that these ‘expected’ metabolites have not yet been

detected in a biological sample. These ‘expected’ meta-

bolites comprise, in particular, lipid species that are

made up of several fatty acid side chains with different

chain lengths and degrees of desaturation that may

occur in a combinatorial fashion (Wenk 2005). The

number of metabolites becomes much smaller when the

scope is limited to confirmed metabolites in a single

biological fluid: in an attempt to detect as many known

metabolites as possible in a single sample, a multi-

platform metabolomic approach using NMR and a set of

different types of MS identified 445 and quantified 378

unique metabolites or metabolite species in human urine

(Bouatra et al. 2013). Overall, the human urine meta-

bolome database describes 2651 confirmed human urine

metabolite species (http://www.urinemetabolome.ca).

To date, no single existing technique alone can be

expected to provide the full picture in any diabetes study

with metabolomics. In expectation of future technical

improvements, it is thus advisable to store valuable

specimens in adequate bio-banks for future re-analysis,

ideally aliquoted into small volumes so that no

additional thawing cycles are required (Fliniaux et al.

2011, Yin et al. 2013).
Cross-sectional studies for the identification
of altered metabolic pathways

Altered metabolite profiles can be the indicators of

changes in disease-relevant metabolic processes. Meta-

bolites that associate with relevant disease phenotypes
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-14-0024 Printed in Great Britain
can be developed into biomarkers that are indicative of a

metabolic deregulation. However, the question of whether

a perturbation in a metabolite is causal to a disease

phenotype, consequential, or just driven by a confound-

ing factor needs to be addressed eventually. Inter-

correlations between different metabolites can help with

answering this question. The ‘simplest’ design of a

diabetes study with metabolomics is a case–control design,

in which blood is collected at a single time point from a

group of patients with diabetes and from a ‘healthy’ group

of controls. Statistically significant differences in meta-

bolite concentrations between the groups are then

analyzed and interpreted. Cases and controls can be

matched to reduce the influence of confounding factors,

but modeling of covariates into statistical models appears

to be the preferable alternative (Faresjo & Faresjo 2010,

de Graaf et al. 2011). Often, cross-sectional studies draw

their samples from existing larger population studies

that have an epidemiological background. A pilot study

(Suhre et al. 2010), conducted in the general German

Cooperative Health Research in the Region of Augsburg

(KORA) population (Wichmann et al. 2005) using 40 cases

of type 2 diabetes (T2D) and 60 controls, showed that

diabetes-related complications can already be detected

under subclinical conditions by screening over 420 unique

small molecules on three different metabolomics plat-

forms (Fig. 1). This study identified diabetes-associated

perturbations of metabolic pathways linked to kidney

dysfunction (3-indoxyl sulfate), indicators of interaction

with the gut microflora (bile acids), and lipid metabolism

(glycerophospholipids, free fatty acids). The latter obser-

vation replicated early work on plasma phospholipid

metabolic profiling by Wang et al. (2005), who reported

associations of different types of phospholipids with

T2D. In a cohort of 399 nondiabetic subjects with a

broad spectrum of insulin sensitivity and glucose toler-

ance and using a nontargeted metabolomics approach,

Gall et al. (2010) found that a-hydroxybutyrate (AHB)

is an early marker for both insulin resistance and
Published by Bioscientifica Ltd.
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Figure 1

An example of perturbed metabolites and metabolic classes that were

found associated with incident diabetes in a metabolomics study and their

link to organ-specific processes and pathways (Figure reproduced from

Suhre et al. (2010)).
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impaired glucose regulation. The underlying biochemical

mechanisms may involve increased lipid oxidation and

oxidative stress. Menni et al. (2013) conducted a much

larger cross-sectional metabolomics study on diabetes,

with a broad nontargeted panel of 447 metabolites in

blood plasma from participants of the TwinsUK study

(Moayyeri et al. 2013). The authors found molecular

markers that arise before and after hyperglycemia in a

large population based study of 2204 female participants,

of whom 115 had T2D and 192 had impaired fasting

glucose. In their study, 42 metabolites from three major

energy sources, carbohydrates, lipids, and proteins, associ-

ate significantly with T2D after adjusting for multiple

testing. Twenty-two of these metabolites had already

previously been reported in association with T2D or

insulin resistance, 20 were newly discovered.

Mook-Kanamori et al. (2014) conducted a case–control

study to screen for diabetes-relevant metabolic readouts

in saliva, using blood and urine as a reference. Using a

nontargeted MS platform, they tested 2178 metabolites

in saliva, blood plasma, and urine samples from 369

individuals for association with T2D. They observed a

strong association of T2D with 1,5-anhydroglucitol

(1,5-AG) in saliva that was robust across three different

non-Caucasian ethnicities, irrespective of BMI, age, and

gender. 1,5-AG in blood has been established in the past

as a reliable marker of short-term glycemic control (Kim

et al. 2012), indicating that 1,5-AG in saliva can be used as

a noninvasive marker for screening undiagnosed diabetes.
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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Prospective studies and biomarker discovery

While cross-sectional case–control studies can provide

valuable insights into the mechanisms and processes

related to the actual disease state and its co-morbidities,

and are particularly interesting for biomarker discovery for

incident diabetes, observations taken before disease onset

are required in order to identify metabolic biomarkers that

are predictive of disease development and its related

co-morbidities. Such longitudinal studies require samples

to be collected for metabolic analysis even before concrete

plans for these measurements had been conceived, which

makes such samples particularly valuable. A hallmark

study of this design is that of Wang et al. (2011). Using a

panel of amino acids, amines, and other polar metabolites

in a longitudinal setting with 2422 individuals followed

for 12 years (201 of whom developed diabetes), the

authors found that all three branched chain amino acids

(BCAAs) – isoleucine, leucine, valine – and two aromatic

amino acids – tyrosine and phenylalanine – are associated

with future diabetes. Furthermore, a subset of three of

them, with the ‘top combination’ of isoleucine, phenyl-

alanine, and tyrosine, could be used to predict future

diabetes. It is of note here that BCAAs have previously

been associated with incident T2D in cross-sectional

studies, indicating the importance of perturbed amino

acid metabolism in patients with T2D (Newgard et al.

2009, Fiehn et al. 2010, Gall et al. 2010, Suhre et al. 2010).

Newgard et al. (2009) actually tested the effect of a high-fat

diet supplemented with BCAA on insulin resistance in

rats. Their findings indicated that in the context of a

dietary pattern that includes high fat consumption,

BCAAs contribute to the development of obesity-associ-

ated insulin resistance.

Würtz et al. (2012) studied the metabolic signatures

of insulin resistance in 7098 young adults. They again

confirmed the association of branched-chain and aromatic

amino acids, gluconeogenesis intermediates, ketone

bodies, and fatty acids with insulin resistance. Moreover,

due to the large number of samples, they were able to

identify statistically significant sex- and obesity-

dependent interactions, showing that leucine, isoleucine,

valine, and tyrosine were significant in women only if they

were abdominally obese.

Using a lipidomics-oriented panel with 140

metabolites in 4297 fasting serum samples from a

longitudinal population-based study, covering a time

span of 7 years, Wang-Sattler et al. (2012) identified

candidate biomarkers for pre-diabetes. Their study indi-

cated that the levels of the three metabolites glycine,
Published by Bioscientifica Ltd.
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linoleoylglycerophosphocholine (lyso-phosphatidyl-

choline 18:2, L-GPC), and acetylcarnitine were altered in

individuals with impaired glucose tolerance (IGT). Lower

levels of glycine and L-GPC were predictors of IGT and

T2D. To test the predictivity of AHB and L-GPC for

incident dysglycemia, Ferrannini et al. (2013) enrolled

1261 nondiabetic participants from the Relationship

between Insulin Sensitivity and Cardiovascular Disease

(RISC) study and 2580 from the Botnia Prospective Study,

with 3- and 9.5-year follow-up data respectively. They

found that AHB and L-GPC are independent predictors of

degrading glucose tolerance and are physiologically

consistent with a joint signature of insulin resistance

and b-cell dysfunction. Floegel et al. (2013) used a targeted

metabolomics approach to identify serum metabolites

that are associated with the risk of T2D in a study

comprising 800 incident cases of T2D and 2282 controls,

randomly drawn from the European Prospective Investi-

gation into Cancer and Nutrition (EPIC)-Potsdam. The

mean time of follow-up for this study was 7 years.

In addition to associations found between several phos-

pholipids, hexoses, and phenylalanine, lower levels of

glycine and L-GPC were again found to be associated

with an increased risk of developing T2D. In a nested

case–control design with 188 cases and 188 matched

controls of the Framingham Heart Study, Wang et al.

(2013) identified 2-aminoadipic acid (2-AAA) as being

most strongly associated with the risk of developing

diabetes within a 12 years follow-up time. Study partici-

pants in the top quartile of 2-AAA concentrations had

a four times higher risk of developing T2D.

After identification of an association of a metabolic

trait with a disease-related trait, the next challenge is how

to develop this knowledge into a clinically applicable

biomarker (Batch et al. 2014). Milburn & Lawton (2013)

present an example of how a set of metabolites that is

associated with a T2D-related phenotype can be translated

into a fasting blood biomarker for the diagnosis and

monitoring of insulin resistance. Cobb et al. (2013)

conducted a clinical study of the resulting clinical test,

called Quantose.

From these cross-sectional and prospective studies,

it emerges that diabetes-related perturbations of metabolic

pathways involve many different classes of metabolites,

including carbohydrates, amino acids, in particular BCAAs

and glycine, and certain lipids, such as phospholipids

and L-GPC. Many associations were coherently associated

with T2D-related phenotypes in several studies. In many

cases the specific nature of the metabolic phenotypes

provides deeper functional insights into the metabolic
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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perturbations that may be at the basis of these associations

(Newgard 2012). However, most of these studies focused on

broad outcomes, such as incident diabetes or insulin

resistance. It can be expected that future metabolomics

studies on diabetes with more detailed characterization

of the patients’ diabetes state and a specific focus on

diabetes-related co-morbidities, such as skin disorders,

micro-vascular, or macro-vascular incidents shall reveal

even deeper insights into the pathophysiology of this

complex disease.
Challenge studies to investigate
physiological perturbations

Metabolomics measurement taken during physiological

challenges may allow the identification of metabolic

signatures that are not detectable in the fasting state

(Shaham et al. 2008, Pellis et al. 2012, Ho et al. 2013). Krug

et al. (2012) revealed the dynamic range of the human

metabolome by submitting 15 young healthy male

volunteers to a highly controlled challenge protocol over

a 4-day period. The challenges included a 36 h fasting

period, oral glucose and lipid tests, controlled liquid test

meals, physical exercise, and cold stress challenges. The

study resulted in a rich data set of 275 metabolic traits

from blood, urine, exhaled air, and breath exhale

condensate, measured at up to 56 time points and

provides a unique reference for future metabolomics

studies. The data collected for this study is freely available

at http://metabolomics.helmholtz-muenchen.de/humet/.

The authors show that physiological challenges increase

the variation that is observed between individuals,

revealing metabolic phenotypes that are not observable

under baseline (typically overnight-fasting) conditions.

Protocols developed within this study were applied by

Wahl et al. (2014) to elucidate the role of genetic variance

in the FTO gene, one of the major diabetes and obesity risk

genes (Frayling et al. 2007). The metabolic response to

five defined challenge tests, consisting of an oral glucose

tolerance test, a standardized high-fat high-carbohydrate

meal, and a lipid tolerance test, as well as an intravenous

glucose tolerance test and a euglycemic hyperinsulinemic

clamp, was investigated in the plasma samples of 25

homozygous carriers of the FTO risk allele (rs9939609 AA

genotype) and 31 carriers of the protective TT genotype.

Although this study found only minor effects of FTO

genotype on the metabolite fluxes after standardized

metabolic challenges, it highlights how gene and

environment interactions can be investigated in future

diabetes studies with metabolomics, using well-designed
Published by Bioscientifica Ltd.
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physiological challenge protocols. Similarly, metabolo-

mics-based challenge studies can be conducted using

animal models of diabetes. For instance, transgenic pigs

that express a dominant-negative glucose-dependent

insulinotropic polypeptide receptor (GIPRdn) develop

impaired glucose control and display loss of b-cell mass.

These animals provide a unique opportunity for studying

metabolic changes that occur before the onset of overt

diabetes. Renner et al. (2012) report results from a

metabolomics study from intravenous glucose tolerance

tests of 2.5- and 5-month-old GIPRdn transgenic and

control animals. They found that seven amino acids

(Phe, Orn, Val, xLeu, His, Arg, and Tyr) were increased in

2.5-month-old pigs, but decreased in 5-month-old GIPRdn

transgenic pigs compared with controls, and that certain

sphingomyelins and phospholipids were decreased in

the plasma of 5-month-old GIPRdn transgenic pigs. The

observed changes in metabolite concentrations were

associated with gene expression levels of relevant pathways

in the liver and provide new insights into diabetes-related

pathways that cannot be studied easily in humans.
Identification of metabolic markers of drug
efficacy and off-target effects

Currently, the most frequently applied drugs for the

therapy of T2D include suppressors of hepatic gluco-

neogenesis (metformin) (Hundal et al. 2000), insulin-

sensitizing PPAR agonists (pioglitazone) (Hirose et al.

2002), and insulin secretagogues (sulfonylureas) (Groop

1992). However, therapeutics that target the multifactorial

nature of T2D to increase drug efficiency are still in an

early phase of the development. In this study, meta-

bolomics finds its application in the development

and screening of new drugs (pharmacometabolomics)

(Kaddurah-Daouk et al. 2008) by generating a largely

unbiased metabolome-wide view of drug-induced pertur-

bations that can be applied at each level of the

therapeutics discovery pipeline from cellular and animal

disease models to the preclinical and clinical translation

(Robertson & Frevert 2013). Pharmacometabolomics can

capture both a drug’s pathway of action and unexpected

off-target effects of a new drug. In an early metabolomics

study in mice, Watkins et al. (2002) found that the PPARg

antagonist rosiglitazone induced hypolipidemia and

elicited an unusual accumulation of polyunsaturated

fatty acids within adipose tissue in mice. Using a similar

study design, Altmaier et al. (2008) found that methyl-

glutaryl carnitine is oppositely affected by rosiglitazone

treatment in healthy and diabetic (db/db) mice. They also
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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report a diabetes-related shift in lysophosphatidylcholine

to phosphatidylcholine ratios.

Starting from the observation that metabolomics

may indicate functionally relevant perturbations in

metabolism, the technique can also be used to identify

mechanistic markers for drug action, which can then be

used for screening and efficacy tests. For instance, the fatty

acid-binding protein 4 (FABP4) is part of a family of lipid

chaperones that control intracellular fatty acid fluxes.

Mice lacking FABP4 are protected against genetic or diet-

induced insulin resistance, making FABP4 inhibition a

target for anti-diabetes drug development. Using a

targeted metabolomics platform with a focus on lipid-

related species, Suhre et al. (2011a) showed that FABP4

inhibition leads to a clear metabolic signature in the form

of a shift between lipid species that contain different

amounts of mono- and unsaturated C16 and C18 fatty

acids (C16:0, C16:1, C18:0, and C18:1). Note that these

fatty acids are substrates of FABP4. The biomarker

identified in that study was a ratio between two

phospholipids and can be implemented in high-through-

put screenings of potential FABP4-inhibitory molecules.

Metabolite profiling should thus have a firm place in the

development of anti-diabetes drugs, be it for the investi-

gation of functional mechanisms, the identification of

drug side effects, the development of mechanistic markers

of drug efficacy, or the evaluation of changes in metabolic

profiles related to treatment response.
The role of genetic variance and the
intermediate metabolic phenotypes

Diabetes is a metabolic disorder with a considerable

heritable contribution. Studies indicate up to 69%

heritability for T2D in patients, with age at onset of

35–60 years (Almgren et al. 2011). When investigating

metabolic perturbations in the context of diabetes, it is

therefore important to consider the role of genetic

variance in modification of a patient’s body’s metabolic

capabilities. Genome-wide association studies (GWAS)

with metabolic phenotypes have identified many genetic

loci that modulate the metabolic phenotype as a function

of genotype (reviewed in Suhre & Gieger (2012)). These

so-called genetically influenced metabotypes (GIMs) are

generally constituted of relatively frequent genetic

variants, with minor allele frequencies of 20% and

above, show large effect sizes that explain 10–20% of the

observed variance in the metabolic trait, and are most

often located in or near metabolically active genes, such as

enzymes, transporters, and regulators thereof, and in
Published by Bioscientifica Ltd.
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mostly all cases the associated metabolic phenotypes then

match the function of the genes (Suhre et al. 2011b).

Despite its high heritability, GWAS with T2D have

failed to identify genetic variants that explain the larger

part of the genetic risk of developing diabetes for an

individual. This lack of explained genetic risk is referred to

as the ‘missing heritability’ (Maher 2008) and indicates

that more complex interactions between many genetic

variants need to be considered. To approach this problem,

Kronenberg (2012) suggested investigating intermediate

metabolic phenotypes as a means to connect genetic

variants with disease end-points. For instance, the first

large-scale association study for T2D (WTCCC 2007)

found a marginal association of the LIPC locus with T2D

(SNP rs4775041; PZ0.061). At that time, this locus also

associated only weakly (PZ0.025) with blood triglyceride

levels (Kathiresan et al. 2008). However, the first GWAS

with metabolic traits (Gieger et al. 2008) identified a nearly

genome-wide significant association of several phosphati-

dylethanolamine species (PE aa C38:6, PZ9.6!10K8) at

this locus. Subsequent GWAS confirmed the association of

the LIPC locus with triglycerides (Teslovich et al. 2010)

and with phosphatidylethanolamines (Shin et al., Nature

Genetics (In Press)), and revealed an association with

metabolic syndrome (Kraja et al. 2011). Despite its low

statistical power, the Gieger et al. (2008) GWAS with

metabolomics could hence identify an intermediate

metabolic trait that arguably lies on the pathway between

genetic variants of the hepatic lipase LIPC and diabetes-

related outcomes, such as triglyceride levels and metabolic

syndrome. It is noteworthy herein that phosphatidyl-

ethanolamines were also found to be associated with

diabetes in a subsequent study (Suhre et al. 2010).

A second example where genetics is linked to

metabolomics in the study of diabetes is the glucokinase

(hexokinase 4) regulator (GCKR) locus. This is a major

pleiotropic risk locus associated with diabetes- and

cardiometabolic-related traits, such as fasting glucose

(Dupuis et al. 2010) and insulin levels (Aulchenko et al.

2009), triglyceride levels, and chronic kidney disease

(Kottgen et al. 2010). It is also associated with many

metabolic traits (Illig et al. 2010, Würtz et al. 2012).

A recent GWAS for metabolic traits has also found a strong

association of the GCKR locus with mannose-to-glucose

ratios (Suhre et al. 2011b). The fasting level of mannose

is lower in carriers of the risk allele, as opposed to that

of glucose, which is higher. Little is known about the

physiological role of mannose, other than its use in

protein glycosylation. Mannose enters the cell via a

specific transporter that is insensitive to glucose
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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(Panneerselvam & Freeze 1996), and hepatic glycogen

breakdown is implicated in the maintenance of plasma

mannose concentrations (Taguchi et al. 2005). These

observations and the association with GCKR detected in

the GWAS study, which is even stronger than that of

glucose with GCKR, call for further investigation of the

role of mannose as a differential biomarker, or even as a

potential point of intervention in diabetes care. A third

example of a diabetes-relevant GIM is SNP rs10830963 in

the gene encoding the melatonin receptor (MTNR1B)

which is associated with fasting glucose (Prokopenko et al.

2009). The same SNP in associated with tryptophan-to-

phenylalanine ratios in the study reported by Illig et al.

(2010). Phenylalanine is a precursor of melatonin, there-

fore indicating a possible functional relationship between

this pathway and the regulation of glucose homeostasis

(Illig et al. 2010).

Beyond inherited genetic variance alone, epigenetic

modifications of DNA are suspected to be associated with

diabetes phenotypes (Ng et al. 2010, Drong et al. 2012).

A recent epigenome-wide association study (EWAS) of

DNA methylation with metabolomics has shown that

DNA methylation also plays an important role in human

metabolism (Petersen et al. 2014). In this study, we

briefly highlight one diabetes-relevant example from

that study: the thioredoxin-interacting protein (TXNIP)

plays a functional role in glucose regulation. DNA

methylation levels of CpG locus cg19693031 near the

TXNIP gene were associated with levels of chylomicrons

in blood plasma, and also with known metabolic

markers of diabetes, including different phospholipids,

hexose, and AHB. In a previous study, TXNIP expression

was elevated in the muscle of pre-diabetic and diabetic

study participants (Parikh et al. 2007). However, there

was no evidence for association between common

genetic variations in TXNIP and T2D. Hence, DNA

methylation may play a regulatory role of TXNIP,

resulting in the observed metabolic phenotype. These

examples show that by combining information from

different types of genetic and disease association studies,

it is possible to extract new insights into metabolic

pathways relevant to diabetes.
Future directions: study design and
data analysis

A number of lessons can be learned from the studies

cited in this review. Clearly, metabolomics is one of

the methods of choice that should be applied when-

ever the resources and sample availability permit it.
Published by Bioscientifica Ltd.
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Existing samples from previous and ongoing epidemio-

logical cohort studies provide easy access to extensive

phenotype datasets in cross-sectional and prospective

designs and have been the prime source for large-scale

metabolomics studies on diabetes so far. Drawbacks of

these studies are in particular a relatively coarse character-

ization of the T2D phenotype, many studies lacking for

instance data on glucose tolerance tests, not to mention

euglycemic clamp tests or more elaborate metabolic

challenges. Moreover, in most cross-sectional studies,

participants with T2D constitute a very heterogeneous

group. For instance, individuals with well-adjusted dia-

betes are possibly more similar to members of the control

group than some potentially pre-diabetic ‘healthy’ study

participants. Medical treatment and development of co-

morbidities vary for every patient. Detailed phenotyping

of study participants is hence of utmost importance,

where at the same time large participant numbers are

required in order to obtain statistically significant associ-

ation results when testing multiple metabolic traits. In a

world of limited resources, this necessarily leads to a trade-

off between depth of phenotyping and study size. We shall

probably find studies in the future that cover the whole

spectrum between large number of participants and

exhaustive phenotypic and metabolic characterization,

ideally also some combined with physiological challenges.

All those studies have their merit and shall complement

each other. In particular, we expect to see more extensive

metabolic coverage of less commonly studied biological

samples, including saliva, stools, tears, sweat, hair, finger-

nails, and, wherever accessible, tissue from biopsies. This

may in particular include combined studies of the gut

microbiome (Martin et al. 2007) and studies of patients

undergoing bariatric surgery (Friedrich et al. 2012). New

prospective studies should in particular attempt to enroll

patients that are newly diagnosed with diabetes and yet

untreated, in order to be able to investigate individual

responses to treatment from the start. A lesson learned

from past epidemiological studies is that one should collect

and store as many samples of different kinds of biomaterial

as possible for future use, and for as many time points as

possible, even if at the time of study design neither plans for

analysis nor funding for their analysis are available. Wisely

built-up biobanks should be able to attract such funding

easily at a later stage when samples are readily available in

a freezer (Watts 2012).

This review has focused mostly on human studies,

but the value of metabolomics studies in cell culture

and animal models should not be underestimated. Here

again, a combination of deep metabolic phenotyping
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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with large sample numbers, including biological repli-

cates, multiple conditions, and time points, are key to

success. In contrast to studies on human samples, animal

studies allow for access to a combination of tissues from

several organs, while work on cell culture allows for the

variation of a single parameter at a time and potentially

even investigation of the metabolome of a single cell

(Ibanez et al. 2013), possibly limited to specific subcellular

organelles. Moreover, although only briefly mentioned in

this review, the value of parallel access to complementary

large-scale data, such as genome-wide genetic variation,

DNA methylation, gene expression, noncoding RNA

levels, and proteomics cannot be overestimated. Metabo-

lomics is only one facet of the greater picture that

describes a complex disease (albeit one of the most

informative ones when it comes to metabolic disorders).

One major challenge for the future lies in the integrative

interpretation of these datasets, going beyond simple

association tests on single phenotypes. New data analysis

approaches naturally rely on systems biology methods,

including for instance the unbiased analysis of all possible

pairs of ratios between metabolite concentrations

(Petersen et al. 2012), their connection in Gaussian

graphical models (Krumsiek et al. 2011, 2012), and the

interpretation of metabolomic profiles using unbiased

pathway models (Deo et al. 2010).
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