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Abstract
In the week following pancreatic islet transplantation, up to 50% of transplanted islets

are lost due to apoptotic cell death triggered by hypoxic and pro-inflammatory cytokine-

mediated cell stress. Thus, therapeutic approaches designed to protect islet cells from

apoptosis could significantly improve islet transplant success. IGF2 is an anti-apoptotic

endocrine protein that inhibits apoptotic cell death through the mitochondrial (intrinsic

pathway) or via antagonising activation of pro-inflammatory cytokine signalling (extrinsic

pathway), in doing so IGF2 has emerged as a promising therapeutic molecule to improve islet

survival in the immediate post-transplant period. The development of novel biomaterials

coated with IGF2 is a promising strategy to achieve this. This review examines the

mechanisms mediating islet cell apoptosis in the peri- and post-transplant period and aims

to identify the utility of IGF2 to promote islet survival and enhance long-term insulin

independence rates within the setting of clinical islet transplantation.
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Introduction
Islet transplantation is an emerging therapy for highly

selected patients with type 1 diabetes mellitus (T1D) and is

now a funded treatment in the United Kingdom, France,

Switzerland and recently in Australia (McCall & Shapiro

2012, O’Connell et al. 2013). Islet allotransplantation into

a recipient with T1D exposes the transplanted islets to

a number of apoptotic stresses, including the instant

blood-mediated inflammatory reaction (IBMIR), hypoxia,
inflammation, hyperglycemia, enzymatic and mechanical

injury and immune-mediated rejection that contribute

to islet allograft failure in the early post-transplant period

(Robertson 2004, Tjernberg et al. 2008, Walters et al. 2013).

Thus, inhibition of islet apoptosis is an attractive and

potentially effective therapeutic strategy to prevent the

loss of functional islet mass post transplantation and

improve clinical islet transplant outcomes.
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The insulin-like growth factor (IGF) family consists of

two IGF peptides (IGF1 and IGF2), the actions of which are

regulated by six binding proteins (IGFBP1–6). IGF2 is more

highly expressed than IGF1 during development in

rodents, ruminants and humans (Delhanty & Han 1993,

Hill & Pell 1998), suggesting that it may be the more

important IGF during development (Sang et al. 2008).

Recently, Hills et al. (2012) have described IGF2 as a more

effective anti-apoptotic survival factor compared with

IGF1 in human placental villous cytotrophoblasts. While

others (Giannoukakis et al. 2000) have shown that

adenoviral-mediated IGF1 overexpression was unable to

protect isolated human islets from pro-inflammatory

cytokine-induced apoptosis in vitro. In comparison, IGF2

exerts a robust anti-apoptotic effect on many cell and

tissue types including neurons, ovarian pre-ovulatory cells

and pancreatic islets (Jung et al. 1996, Stewart & Rotwein

1996, Petrik et al. 1998). Jourdan et al. (2011) have shown

the usefulness of IGF2 as an islet survival factor in a rodent

model of islet engraftment, and transgenic overexpression

of IGF2 protects against pro-inflammatory cytokine-

induced apoptosis in vitro and improves islet transplant

outcomes in vivo (Hughes et al. 2013), a process mediated

via the interaction of IGF2 with the IGF1 receptor (IGF1R)

on the islet cell surface. For these reasons, we believe that

IGF2 represents the more promising endocrine growth

factor to improve islet transplant survival. This review

provides an overview of the current mechanisms of islet

cell apoptosis in the peri- and post-transplant period. In

addition, this review focuses on the actions of IGF2 within

native, isolated and transplanted islets and discusses the

therapeutic potential of IGF2 to promote islet cell survival

and function post transplantation.
Apoptosis in islet transplantation

Apoptosis, also called programmed cell death, refers to a

set of events within multicellular organisms, which lead to

the breakdown of chromosomal DNA and the cessation

of metabolic activity (Sia & Hanninen 2006). The key

enzymes mediating the progression of apoptosis within

a cell are the cysteine aspartate protease family of

enzymes called caspases. Caspases reside within a cell as

inactive procaspases (zymogens) until they are activated

in response to pro-apoptotic stimuli. Once activated,

caspases proceed to activate other caspases in a

hierarchical manner, leading to the amplification of the

apoptotic signalling cascade and cell death. Immediately

following transplantation, islets experience the IBMIR

that involves activation of coagulation pathways and
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-13-0557 Printed in Great Britain
complement and infiltration of pro-inflammatory

cytokines, such as interleukin-1b (IL1b) and interferon-g

(IFNg) (Moberg et al. 2002, Johansson et al. 2005).

Allogenic rejection of islet grafts involves the activation

of the adaptive immune system, in addition perforin and

granzyme are primary mediators of islet cell death

following transplantation (Sutton et al. 2006). This topic

area has been extensively reviewed in the context of islet

transplantation (Emamaullee & Shapiro 2006) and more

broadly by references (Elmore 2007, Taylor et al. 2008).
Apoptosis in islet transplantation: the role for
pro-inflammatory cytokines

In the early post-transplant period, multiple mechanisms

are at play that negatively impact b-cell function and

lead to islet cell apoptosis. Of these mechanisms, pro-

inflammatory cytokines such as IL1b, IL6, IFNg, tumour

necrosis factor-a (TNF-a) and cyclooxygenase-2 mount a

fierce inflammatory attack against the newly transplanted

islet graft, triggering islet cell death (Cowley et al. 2012).

The extent of cytokine release by islets in the early post-

transplant period is directly related to islet transplant

outcome in the recipient (Schroppel et al. 2005).

Experimentally, the release of pro-inflammatory cyto-

kines by resident islet macrophages has been observed in

rats following islet transplantation in vivo (Bottino et al.

1998, Montolio et al. 2007a,b). Exposure of rat islets to IL1b

in vitro decreases islet insulin content, suppresses

glucose-stimulated insulin secretion, induces DNA damage

and leads to islet destruction (Bendtzen et al. 1986,

Comens et al. 1987, Sandler et al. 1987, Wachlin et al.

2003). Recently, Yeung et al. (2012) have described

morphological alterations in human islets following

pro-inflammatory cytokine exposure in vitro and these

changes are consistent with the cells undergoing apoptosis

(i.e. cell shrinkage and chromosomal condensation).

Mechanistically, pro-inflammatory cytokines mediate

their inflammatory effects largely under the control of

the nuclear factor kB (NFkB) and MAPK cell signalling

pathways (Fig. 1), activation of which renders islets

nonfunctional following the formation of cytotoxic nitric

oxide (NO).
The role of IGF2 in the native, isolated and
transplanted islet

IGF2 is highly expressed in the islet cells during embryonic

development, coincidently; during this period, there is

also substantial growth and structuring of the endocrine
Published by Bioscientifica Ltd.
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Figure 1

Cell signalling pathways activated in the pancreatic islets following

pro-inflammatory cytokine exposure. Brain death is associated with the

endogenous production of pro-inflammatory cytokines such as TNFa, IL1b

and IFNg (coloured triangles). The release of these cytokines is associated

with inflammation and their presence triggers activation of the NFkB

(green text box) and MAPK stress response pathways (purple text box) and

renders islets non-functional, following induction of inducible nitric oxide

synthase (iNOS; light blue box), the formation of NO (blue text box) and the

induction of endoplasmic reticulum (ER) stress. As a result, islets experience

subsequent stresses including the production of free radicals, apoptosis and

hypoxia, among others.
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b-cell component in the pancreatic islets (Hill et al. 1999a).

In humans, immunofluorescence staining has revealed

co-localisation of IGF2 and insulin cells in both fetal and

adult pancreas; however, expression is more pronounced

in the fetal setting (Portela-Gomes & Hoog 2000).

Interestingly, IGF2 expression declines in mice and rats

postnatally and this correlates with increased b-cell

apoptosis in vivo (Petrik et al. 1998, 1999), suggesting that

endogenous IGF2 exerts an early anti-apoptotic effect

within native pancreatic islets. In contrast to this, in

humans, IGF2 remains the most abundant IGF in

circulation throughout life, the expression of which is

detected in many tissues including the CNS, adrenal

medulla, pancreas and purified b-cells (Han et al. 1987,

Bryson et al. 1989, Hill 1990, Hogg et al. 1993,

Miettinen et al. 1993, Asfari et al. 1995, Bergmann et al.

1996, Katz et al. 1997). The post-natal decline in IGF2

expression may be a result of differences in the IGF2 gene

promoter structure between humans and rodents

(Foulstone et al. 2005).

The major role of IGF2 during embryonic develop-

ment is the regulation of islet growth and differentiation,

a role that IGF2 performs in part through its mitogenic
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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growth-promoting effects (Han et al. 1988, Hogg et al.

1993, Miettinen et al. 1993). IGF2 has been shown to

promote pancreatic b-cell survival against apoptotic

stimuli in vitro and in vivo (Rabinovitch et al. 1982, Swenne

et al. 1987, Hogg et al. 1993, Ilieva et al. 1999, Robitaille

et al. 2003, Jourdan et al. 2011) and induce proliferation in

a growth-arrested mouse b-cell line (Milo-Landesman &

Efrat 2002). IGF2 protects pre-diabetic NOD mouse islets

from the cytotoxic actions of IL1b by the mechanisms

that include a reduction in apoptosis (Hill et al. 1999b).

Similarly, adenoviral-mediated overexpression of IGF2 in

isolated rat islets conferred significant protection against

IL1b-induced apoptosis (Estil les et al. 2009) and increased

b-cell replication and b-cell mass regeneration in trans-

planted islets, effectively reducing the b-cell mass required

to achieve normoglycemia in diabetic rats (Estil les et al.

2012). Recently, data from our laboratory has shown the

ability of adenoviral-mediated IGF2 overexpression to

protect islets from pro-inflammatory cytokine-induced

apoptosis in vitro and improve transplant outcomes in a

minimal mass islet transplant model in vivo (Hughes et al.

2013). Most of the biological actions of IGF2, including its

anti-apoptotic effects are mediated via the IGF1R (O’Dell &

Day 1998, Braulke 1999). All endocrine pancreas cell types

express the IGF1R (Van Schravendijk et al. 1987, Fehmann

et al. 1996), providing support for an IGF2-mediated anti-

apoptotic strategy to promote islet survival post trans-

plantation. In the context of IGF2 function, binding of

IGF2 to the IGF1R leads to phosphorylation of insulin

receptor substrate-2, which activates the phosphoinositide

3-kinase/Akt cell signalling pathway to mediate cell

survival (van Haeften & Twickler 2004).

In addition to its anti-apoptotic properties, IGF2

upregulates the expression of vascular endothelial growth

factor (VEGF), an endothelial cell-specific mitogen

involved in vasculogenesis and angiogenesis (Kwon et al.

2004). The production of VEGF in this manner is

particularly advantageous when considering the reduction

in islet vascular density and function that occurs

following the islet isolation procedure. Mechanistically,

IGF2 upregulates VEGF by increasing the expression of

hypoxia-inducible factor-1a (HIF1a), a master regulator of

cellular and systemic homeostatic response to hypoxia.

Interestingly, HIF1a itself has been shown to play a

protective role in various experimental settings of

apoptosis, including islet transplantation (Kim &

Kim 2005, Czibik et al. 2009, Franke et al. 2013, Stokes

et al. 2013). To our knowledge, there have been no studies

aiming to identify whether a synergistic role of IGF2 with

HIF1a exists in the context of islet transplant survival;
Published by Bioscientifica Ltd.
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however, when considering the significant crosstalk that

occurs between both systems (Feldser et al. 1999), it would

be an interesting hypothesis to explore.
The optimal delivery method(s) for IGF2
expression in pancreatic islet cells

Protecting islets from early transplant stresses such as

apoptosis is crucial to prevent islet allograft failure and

ensure long-term insulin independence in diabetic

patients. IGF2 is a promising candidate molecule to fulfill

this need; however, the question remains regarding the

optimal delivery method that should be paired with IGF2

to provide adequate protection against apoptosis.

Theoretically, IGF2 could be delivered in a variety

of ways to protect against islet cell death, including

viral or non-viral gene therapy methods, islet encap-

sulation methods or within polymeric scaffolds, via

supplementation of culture medium with IGF2 before
Table 1 Potential delivery method(s) for IGF2 expression in pancr

Approach Advantages

Supplementation of culture
medium with exogenous IGF2

Minimises islet cell loss during p
culture, leading to increased is
(Ilieva et al. 1999)

Effective as a pre-transplant met
viable islet mass for applicatio
stream strategies, such as islet

Islet encapsulation Immunoprotection (cellular and
McGeachie & Tennant 1997)

Can reduce or prevent chronic a
of immunosupressants and the
side effects (i.e. islet toxicity an

Tissue engineering scaffolds Provide a supportive microenviro
transplanted cells

Can be designed with varying bi
and biodegradable materials,
to be tailored for specific appl
(Salvay & Shea 2006, Hutmache

Gene therapy to overexpress IGF2
(viral/non-viral)

Ex vivo gene therapy ensures tha
expression of IGF2 would be lo
islets, providing cell protection
the immune system and other
unaffected (Hughes et al. 2013

Option for transient (adenoviral
(adeno associated viral and len
transgene expression to suit re
application

Cell line overexpressing IGF2 Can be combined with other ant
strategies, such as islet encaps
co-culture transplantation

Provides the option to overexpre
or in combination

http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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transplantation or under islet coculture conditions, each

with their own advantages and disadvantages (Table 1).

The culture of isolated islets before transplantation

allows the islets to recover following the aggressive

islet isolation procedure that leads to destruction of the

islet microenvironment and contributes significantly

to islet cell apoptosis in the early post-transplant period.

Thus, the islet culture before transplantation provides an

excellent window of opportunity to supplement the islet

culture medium with anti-apoptotic molecules such as

IGF2. This approach has been confirmed by Ilieva et al.

(1999) who demonstrate that the presence of IGF2 during

culture protects islets from isolation-induced apoptosis

and necrosis. A possible disadvantage with pre-culture

incubation of islets is the risk of islet fusion, which may

lead to hypoxia, islet necrosis and significant loss of islet

viability (Ichii et al. 2007). In addition, when considering

the short half-life of growth factors (McGeachie &

Tennant 1997), it is likely that the in vitro benefit would

be short lived in vivo.
eatic islet cells

Disadvantages

re-transplant
let survival

Effect limited by biological half-life of growth
factors (McGeachie & Tennant 1997)

hod to ensure
n in down-
encapsulation

Residual IGF2 expression unlikely to have
additional anti apoptotic benefit in vivo

humoral; Bioincompatibility, characterised by fibrotic
overgrowth upon the microcapsule surface
and reduced diffusion of oxygen and
nutrients (Sakata et al. 2012)

dministration
ir associated
d malignancy)

Unable to revascularise after transplantation,
exacerbating islet hypoxia and subsequent
islet cell death (Narang & Mahato 2006)

nment for Cell seeding to scaffolds can be time consuming
and inefficient due to the limited penetration
ability of cells into the scaffolds
(Chan & Leong 2008)

ocompatible
allowing them
ications
r & Cool 2007)
t the
calised to the
while leaving

organs
)

Non-viral vectors are associated with poor
transduction efficiency compared with their
viral vector counterparts (Mahato et al. 2003)

) or stable
ti-viral)
quired

Stimulation of the immune system
(viral vectors) (Muruve et al. 1999)

i-apoptotic
ulation or

ss genes alone

Results in permanent transgene expression by
the transduced cells which raises potential
concern for malignancy as the cells
permanently overexpress an anti-apoptotic
factor (Bergmann et al. 1996)
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http://joe.endocrinology-journals.org
http://dx.doi.org/10.1530/JOE-13-0557


Jo
u
rn
a
l
o
f
E
n
d
o
cr
in
o
lo
g
y

Review A HUGHES, S T GREY, P T H COATES

and others
Anti-apoptotic IGF2 in islet
transplantation

221 :2 R45
Another interesting approach involves the use of

biomaterials, designed to entrap or encapsulate growth

factors into, or adsorb them onto biological scaffolds

(Hutmacher & Cool 2007, Chan & Leong 2008).

Significant work in this area has been undertaken using

the sister compound IGF1 (Jaklenec et al. 2008, Chen et al.

2009, Sun et al. 2011, Kim et al. 2012). In one example,

Nelson et al. (2011) used porous poly(ester urethane)urea

scaffolds to demonstrate the long-term delivery of

bioactive IGF1 in vitro. Likewise, the Meinel group showed

that IGF1 releasing silk fibroin scaffolds initiated chon-

drogenesis from human mesenchymal stem cells in vitro

(Uebersax et al. 2008). Adsorbing IGF1 onto porous

hydroxyapatite, or chitosan scaffolds, enhanced osseoin-

tegration in vivo due to enhanced osteoblastic proliferation

and vascularisation (Damien et al. 2003, Nandi et al. 2013).

Kodama et al. (2009) engineered functional islets from

single-cell suspensions using a protocol that involved

seeding islets onto a polyglycolic acid scaffold and

supplementing the islet culture medium with growth

factors including IGF2. The resulting islets restored

normoglycemia in diabetic mice.

Alginate microcapsules represent an alternative yet

versatile approach to biological scaffolds, designed to

encapsulate one or a few islets within a semi permeable

membrane. In one strategy, bioengineered TM4 cells stably

overexpressing IGF2 were coencapsulated with islet cells

into alginate microcapsules, leading to significantly

improved islet survival in vitro and in vivo, and improved

normoglycemia maintenance (Jourdan et al. 2011). Since

their introduction over 30 years ago, significant advances

have been made in the engineering of alginate micro-

capsules including refinement of their sophisticated multi-

layer architectures leading to enhanced biocompatibility

and biodegradability in vivo (Schneider et al. 2001).

However, the current major limitation of encapsulated

islets is the fact that they are unable to revascularise after

transplantation, exacerbating islet hypoxia and sub-

sequent b-cell death (Sakata et al. 2012).

Viral and non-viral-mediated transduction of isolated

islets to overexpress IGF2 represents another interesting

option to enhance islet survival. Non-viral vectors offer

the major advantage of high clinical safety and lack of

vector-mediated immunogenicity, but they are signi-

ficantly disadvantaged by their low-efficiency trans-

duction (10–20%) in pancreatic islets (Narang & Mahato

2006). On the other hand, viral vectors offer the advantage

of high-efficiency transduction but are limited by their

unstable expression, need for repeated administration and

stimulation of the immune system (Muruve et al. 1999).
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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The major difficulty of any gene therapy strategy lies in the

requirement for all or most cells to express the gene in

order to gain protection. However, in this regard, IGF2

proves optimal as it mediates its anti-apoptotic effect via

autocrine and paracrine mechanisms which negates the

need for every islet cell to express the therapeutic gene. In

the context of islet transplantation, the isolated islets are

transduced ex vivo outside the body and any remaining

viral particles are ‘washed off’ or removed before trans-

plantation. This considerably limits the likelihood of any

viral vector-mediated systemic response, which can be

potentially life threatening in vivo (Raper et al. 2003).

Moreover, considering that up to 70% of islets can die

due to apoptosis and necrosis in the immediate post-

transplant period, a potential major advantage of a gene

therapy approach is that islets would be exposed to a

constitutively produced supply of anti-apoptotic IGF2

before transplantation and during the immediate

post-transplant period (Hughes et al. 2013).

Engineering of b-cell lines that can protect against

pro-inflammatory cytokine-mediated damage represents

an interesting alternative to isolated islets for trans-

plantation. Chen et al. (2000) developed a cytokine

resistant rat insulinoma INS-1 cell line capable of

protecting against IL1b- and IFNg-mediated apoptosis

more efficiently than cells stably overexpressing the

anti-apoptotic gene Bcl2. There was an enhanced

anti-apoptotic effect when the cytokine selection strategy

was applied to the Bcl2 overexpressing cells. Importantly,

the cells displayed no loss of glucose responsiveness, a

critical function that ordinarily disappears very early

during apoptosis. Combining this cytokine-resistant

selection strategy with a cell line overexpressing IGF2,

such as that used by Jourdan et al. (2011), could provide a

novel approach for improving islet cell survival in the

early post-transplant period.
Conclusions and future perspectives

The primary goal of islet transplantation is to achieve

stable and long-term normoglycaemia in diabetic patients

without the risks of hypoglycaemia. The first barrier that

must be overcome to accomplish this is to improve the

survival of islets in the immediate transplant period.

The endocrine growth factor IGF2 represents a promising

candidate molecule to promote islet survival post trans-

plantation, but additional investigation is required to

identify the optimal delivery approach to ensure sufficient

expression of IGF2 within the islet microenvironment. As

such, the full therapeutic potential of IGF2 to promote
Published by Bioscientifica Ltd.
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islet survival and function post transplantation may not

be realised until improvements are made in the efficacy,

biocompatibility and safety of the gene delivery tech-

nologies currently under investigation.
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