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Abstract
Fatty acids (FAs) are essential elements of all cells and have significant roles as energy

substrates, components of cellular structure and signalling molecules. The storage of excess

energy intake as fat in adipose tissue is an evolutionary advantage aimed at protecting

against starvation, but in much of today’s world, humans are faced with an unlimited

availability of food, and the excessive accumulation of fat is now a major risk for human

health, especially the development of type 2 diabetes (T2D). Since the first recognition of the

association between fat accumulation, reduced insulin action and increased risk of T2D,

several mechanisms have been proposed to link excess FA availability to reduced insulin

action, with some of them being competing or contradictory. This review summarises the

evidence for these mechanisms in the context of excess dietary FAs generating insulin

resistance in muscle, the major tissue involved in insulin-stimulated disposal of blood

glucose. It also outlines potential problems with models and measurements that may hinder

as well as help improve our understanding of the links between FAs and insulin action.
Key Words

" fatty acid metabolism

" fatty acids and energy

expenditure

" muscle insulin resistance
rt o
. Th
SA
Journal of Endocrinology

(2014) 220, T61–T79
Overview

Fatty acids (FAs) are organic acids largely defined by the

length and saturation of the aliphatic side chain attached

to a carboxylic acid. In animals, these side chains normally

contain an even number of carbon atoms and FAs are

grouped into short chain (2–6 carbon atoms), medium

chain (8–12 carbon atoms), long chain (14–18 carbon

atoms) and very long chain (20–26 carbon atoms). The

major types of FAs in the circulation and in the tissues of

mammals are the long-chain and very-long-chain FAs

with varying degrees of saturation. These include palmitic

acid (C16:0), palmitoleic acid (C16:1), stearic acid
(C:18:0), oleic acid (C18:1n-9), linoleic acid (C18:2n-6)

and, particularly in smaller mammals, arachidonic acid

(20:4n-6) and docosahexaenoic acid (22:6n-3). These FAs

are the major components of storage triglycerides and

cellular membranes, and although C16–C18 FAs are also

components of some of the FA-derived signalling

molecules (diacylglycerols (DAGs) and ceramides), many

of the major lipid signalling molecules (prostaglandins

and leukotrienes) are synthesised from very-long-chain,

unsaturated FAs (e.g. arachidonic and docosahexaenoic

acids) ( Kruger et al. 2010).

In the context of the links between excessive lipid

storage (obesity) and reduced insulin action (insulin
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resistance) in muscle, this article will deal with FAs as an

alternative energy substrate to glucose, the relevance of

this substrate competition to overall energy expenditure

and an assessment of the various mechanisms by which

excess FA availability is thought to reduce insulin action in

muscle and predispose to metabolic diseases.
Fuel for energy production

All three of the major types of macromolecules that make

up organic material (carbohydrates, proteins and fats) can

be broken down and oxidised to provide energy for the

maintenance, growth and reproduction of biological

systems. In animals, all proteins have a cellular function

(e.g. as enzymes, or with structural or carrier function),

and there is no identifiable depot of proteins specifically

manufactured and stored solely for future use in energy

production. On the other hand, carbohydrates and fats in

various forms have specific and important functional roles

in cells, but are also present in animal tissues as energy

storage depots of glucose polymers (glycogen) and lipid

droplets (triglycerides). Although glycogen and triglycer-

ide stores can be found in nearly all tissues, glycogen

stored in the liver is critical for the maintenance of blood

glucose levels when glucose is not being absorbed from the

gut and triglycerides stored in adipose tissue act as an

alternative, more reduced and higher energy-yielding

substrate (in terms of energy per gram) for energy

production in tissues with a capacity for fat oxidation.

Although excess protein intake can be converted to

glucose and FAs for energy storage and glucose can also

be converted to fat for energy storage or amino acids for

protein synthesis, it is one of the maxims of energy

metabolism that fat cannot be quantitatively converted to

carbohydrate or protein. Essentially, this means that FAs

stored in adipose tissue can only be used as an energy

source to support cellular functions or to provide specific

precursors that are needed to replace or expand the

structure or signalling functions of FAs.
The contribution of different tissues to fuel
oxidation and energy expenditure

Some tissues have an obligatory need for glucose (brain,

red blood cells and retinal cells), while most tissues have

the capacity to switch between glucose and FAs. The

contribution of different fuels to energy production in

specific tissues and the contribution of different tissues to

the overall energy production and utilisation in the whole

body vary quite markedly. Because of its relative size in
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man and most animals, muscle is considered to be a major

tissue for the disposal of both glucose (James et al. 1985,

Shulman et al. 1990) and FAs (Furler et al. 2000). Because of

the ability of muscle to substantially increase energy

expenditure during exercise (Bangsbo 2000), this tissue is

also very flexible in its capacity to act as a sink for energy

substrates. Other tissues such as the heart have a similar

capacity to increase both the amount and type of substrate

oxidation depending on demand, but because of the

relative size of heart to muscle in the body, the overall

contribution of the heart to whole-body substrate oxi-

dation is only 5–10% (Rolfe & Brown 1997). The liver has a

significant role in the disposal of glucose after a meal and

in the provision of glucose to the circulation to maintain

blood glucose levels when nutrients are not being

absorbed from the gut. The liver also has the ability to

take up FAs, oxidise them or package them in lipoproteins

for export and storage in other tissues and is therefore

central to lipid and glucose homoeostasis (Postic et al.

2004, Moore et al. 2012). Adipose tissue can, particularly in

obese individuals, be the tissue contributing most to

whole-body mass, but per unit mass it does not have a

major impact on whole-body glucose disposal (Kraegen

et al. 1985, Ng et al. 2012). White adipose tissue also has

little impact on the whole-body oxidation of FAs,

although there is significant current research interest in

investigating whether white adipocytes can acquire a

more oxidative brown adipocyte phenotype with a greater

contribution to whole-body substrate oxidation and

energy expenditure (Wu et al. 2013).
The effect offibre composition and exercise on
substrate utilisation by muscle

Although the musculature as a whole is a major

contributor to total body glucose and FA metabolism (Ng

et al. 2012), individual muscles may contribute differently

depending on their fibre composition. Type 1 red muscle

fibres are considered more insulin sensitive, with a greater

oxidative capacity for glucose and FAs, while type II white

muscle fibres contain less mitochondria, are considered

less insulin sensitive and contribute less to FA oxidation

(Nyholm et al. 1997, Pearen et al. 2012). Therefore, a

higher composition of type 1 red fibres in muscle has been

reported to be associated with increased insulin respon-

siveness (Stuart et al. 2013). This view has been challenged

by some recent studies where genetically manipulated

mice (Izumiya et al. 2008, Meng et al. 2013) and

pharmacological approaches (Akpan et al. 2009) suggest

that altering the fibre composition of muscles towards
Published by Bioscientifica Ltd
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glycolytic type II fibres improves glucose homoeostasis

and insulin action in the whole animal. It does seem

important to consider that the contribution of the skeletal

musculature to whole-body energy metabolism and

substrate oxidation should not be based on the assessment

of these parameters in a single muscle type. Acute exercise

and exercise training also have a significant impact on

substrate preference and utilisation at a whole-body and

muscle level (Spriet & Watt 2003, Kiens 2006). Some of

these effects correlate with observed shifts in muscle size

and fibre type that occur with training (Shaw et al. 2012,

Stuart et al. 2013), but other adaptations in muscle

metabolism and body organs could also contribute to

changes in energy metabolism and substrate utilisation

associated with exercise (Laughlin & Roseguini 2008).
Linking substrate oxidation to energy
conservation and energy expenditure

The pathways by which different fuels are oxidised to

support tissue and cellular energy demands in animals are

thoroughly dealt with in major textbooks and summarised

in Fig. 1. Through the glycolytic pathway, pyruvate

dehydrogenase (PDH) and the tricarboxylic acid (TCA)

cycle, glucose can be completely oxidised to CO2 and the

energy released (as reducing equivalents) harnessed in the

form of NADHCHC and FADH2. NADHCHC and FADH2

are reoxidised by the electron transport chain (ETC) and

the reducing equivalents used to reduce atomic oxygen to

water. The electrochemical (proton) gradient generated

by the ETC then drives ATP synthesis via ATP synthase

(Fig. 1). The oxidation of FAs by the mitochondrial

b-oxidation pathway also produces NADHCHC and

FADH2 for the ETC and acetyl CoA that can also be

completely oxidised in the TCA cycle. Because FAs are

chemically more reduced molecules than carbohydrates,

FAs are theoretically able to produce more energy when

completely oxidised than an equivalent carbohydrate

molecule. In other words, the complete oxidation of

six-carbon glucose consumes six oxygen molecules and

produces six carbon dioxide molecules accompanied by

the synthesis of 36 ATP molecules. On the other hand, the

complete oxidation of six-carbon hexanoic acid consumes

eight oxygen molecules and produces six carbon dioxide

molecules for 44 ATP molecules. Such calculations are

based on a fixed stoichiometry between NADHCHC and

FADH2 oxidation and ATP synthesis and can lead to the

conclusion that the oxidation of FAs produces ATP at a

cost of greater oxygen consumption or lower efficiency.

Therefore, a switch to the oxidation of FAs as the major
http://joe.endocrinology-journals.org
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energy substrate should result in less efficient ATP

production and an increase in whole-body energy

expenditure that could lead to a loss of fat mass if

energy intake remains constant (Clapham 2004a,b,

Leverve et al. 2007).

Indirect calorimetry is often used in human and

animal studies to determine total energy expenditure

(indirectly by the measurement of oxygen consumption

and carbon dioxide production), and the measurement of

oxygen consumption and carbon dioxide production can

also be used to calculate the relative use of glucose and FAs

to support that energy expenditure (respiratory exchange

ratio, RER), assuming that any contribution of protein

oxidation is relatively small and constant (Ferrannini

1988, Arch et al. 2006). Based on the assumption that there

is a direct stoichiometry between NADHCHC and FADH2

oxidation, proton translocation and ATP synthesis,

calculations have been made suggesting that a complete

switch from glucose to FAs as a source of energy would

increase oxygen consumption by 7%. However, in

practice, it is unlikely that such theoretical calculations

can be applied to the regulation of energy balance with

any certainty. For instance, rarely does the measured RER

shift from complete glucose oxidation (1.0) to complete

FA oxidation (0.7), even with prolonged exercise

(Gimenez et al. 2013) and starvation (Hoeks et al. 2010)

or without some change in protein oxidation. More

importantly, although there is a direct stoichiometry

between the oxidation of a substrate molecule and the

production of NADHCHC and FADH2, NADHCHC can be

reoxidised in reactions other than Complex I of the ETC

and the proton motive force generated by the ETC can be

dissipated by processes other than ATP synthesis (e.g.

counter-ion transport and uncoupling protein activity)

(Mazat et al. 2013). The concepts of efficiency and

plasticity in the coupling of substrate oxidation to energy

conservation (ATP synthesis) have been expanded on in

several authoritative review articles (Harper et al. 2008,

Mazat et al. 2013). These review articles have highlighted

the presence of a significant and variable basal proton leak

in mitochondria (20–25%) of most tissues and reported

that in perfused rat muscle systems futile proton cycling

may contribute as much as 50% to the respiration rate

(Rolfe & Brand 1996), although other methodologies have

suggested that this could be as little as 10% (Marcinek et al.

2004, Conley et al. 2007).

Irrespective of the exact mechanisms of proton leak

and mitochondrial coupling of substrate oxidation to ATP

production and oxygen consumption, it seems clear that

using strict stoichiometric relationships (three ATPs per
Published by Bioscientifica Ltd
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Figure 1

Pathways of substrate metabolism in muscle. Oxidation pathways of

glucose, FAs and amino acids converge at the level of acetyl CoA. The

energy of oxidation is conserved as NADHCHC and FADH2, which are used

by the electron transport chain to produce a chemiosmotic gradient across

the inner mitochondrial membrane. This proton motive force is dissipated

by ATP synthesis and by proton leak via the adenine nucleotide transporter

(ANT) and activated uncoupling proteins (UCPx). Demand for ATP and

proton leak are greater determinants of oxygen consumption and heat

production than the substrate being oxidised.Jo
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NADHCHC and two ATPs per FADH2) to calculate whole-

body oxygen consumption and energy expenditure from

the measurements of relative substrate oxidation is

unlikely to reflect the actual measurements of energy

expenditure. In reality, coupling efficiency can vary

significantly depending on changes in proton leak or

ATP demand, but in cell systems at least, changes in

substrate oxidation do not appear to influence the

relationship between oxygen consumption and ATP

synthesis (Brand et al. 1993).
Can switching substrate alter energy
expenditure?

The above discussion clearly leads to the conclusion that

the cost of generating mitochondrial ATP in terms of ETC

activity and oxygen consumption can vary significantly

and is not affected to any large extent by the substrate

being oxidised to provide the reducing equivalents for
http://joe.endocrinology-journals.org
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electron transport. Despite this, it is not uncommon to

read about studies in whole animal systems (particularly

genetically modified mice) where differences in fat mass

are often mechanistically related to changes in the mRNA

levels of FA metabolism genes in a variety of tissues

without appropriate consideration of the contribution of

these tissues to whole-body energy expenditure (Abu-

Elheiga et al. 2001, 2003, Lee et al. 2009, Hu et al. 2012,

Ronis et al. 2013). In the context of investigations of

energy balance in lean and obese mice, there are excellent

recent reviews pointing out potential problems with

assessing differences in food intake and energy expendi-

ture using indirect calorimetry systems and extrapolating

any differences to explain gain or loss of fat mass (Butler &

Kozak 2010, Tschop et al. 2012). For example, expression

of oxygen consumption or heat production on a kilogram

body weight basis can be misleading if animals have

significantly different amounts of fat tissue, because the

metabolic rate of fat per gram is much lower in tissues such
Published by Bioscientifica Ltd
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as muscle and liver (Frayn et al. 1995). Similarly, the

difference in daily food intake needed to contribute to a

significant gain of body fat over several weeks in mice can

be so small as to be undetectable unless large numbers of

mice (200–300) are used for the comparison (Tschop et al.

2012). Changes in the body weight and body fat of groups

of adult mice with different genotypes on different diets

should reflect cumulative differences in energy intake and

energy expenditure. However, any differences might not

be easily detected if animals are assessed for food

intake and energy expenditure individually in indirect

calorimetry systems, away from their home cage and

communal environment for only a 24–48-h period of the

several weeks over which body weight and fat mass have

been monitored.
AMPK activation, FA oxidation and
energy expenditure

AMP-activated protein kinase (AMPK) is recognised as a

master regulator of energy metabolism, particularly in

times of energy stress such as exercise, hypoxia and

starvation (Hardie et al. 2012). The activation of AMPK

has been shown to acutely increase FA and glucose uptake

and metabolism in a variety of experimental situations

including in vitro and in vivo experiments in muscle

(Iglesias et al. 2004, Smith et al. 2005). The long-term

effects of AMPK activation in muscle lead to the activation

of gene transcription pathways that increase mito-

chondrial biogenesis and proteins of oxidative metab-

olism (Winder et al. 2000, Hardie et al. 2012). The acute

regulation of FA oxidation by AMPK is largely through the

phosphorylation and inactivation of the enzyme acetyl

CoA carboxylase 2 (ACC2). ACC2 produces malonyl CoA,

an allosteric inhibitor of the key enzyme carnitine

palmitoyltransferase 1 (CPT1), which controls the

entry of FAs into the mitochondria for oxidation (Hardie

& Pan 2002).

The pharmacological activation of AMPK has been

shown to produce changes in muscle metabolic pathway

capacity similar to those produced by exercise training

(O’Neill et al. 2013); however, there is considerable

controversy as to whether AMPK activation can drive

energy expenditure in the absence of exercise. A series of

studies employing genetic deletion of Acc2 (Acacb) have

reported reduced fat depots in association with increased

FA oxidation in isolated muscle (Abu-Elheiga et al. 2001,

2003) and have subsequently reported increased

energy expenditure (although not increased FA oxidation)

in Acc2-knockout mice with less fat and less lean mass
http://joe.endocrinology-journals.org
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(Choi et al. 2007). These results suggest that the inhibition

of ACC2 by the activation of AMPK or development of

ACC2 inhibitors might promote FA oxidation and produce

fat loss. Subsequent studies using independently gener-

ated Acc2-knockout mice did not reproduce these effects,

reporting that although these mice exhibited increased FA

oxidation at the whole-body and isolated muscle level,

there was no measurable difference in energy expenditure,

fat mass or food intake (Hoehn et al. 2010). However, there

was an increased glycogen content in muscle, an effect of

AMPK activation noted previously (Winder et al. 2000,

Buhl et al. 2001), which is consistent with AMPK

activation and ACC2 inhibition promoting FA oxidation

and channelling glucose taken up by muscle into storage

as glycogen (Vitzel et al. 2013). Another study using

independently generated genetically manipulated mice

has reported no difference in body weight, food intake or

fat mass in global or muscle-specific Acc2 gene-deleted

mice (Olson et al. 2010), adding to the conclusion that

altering FA oxidation in the absence of any change in

energy expenditure or energy intake is insufficient to have

a significant impact on whole-body fat mass.

Therefore, it would appear that apart from theoretical

calculations suggesting that increasing fat oxidation will

drive increased energy expenditure, there is little experi-

mental evidence to support the idea that energy expendi-

ture can be increased simply by increasing substrate

availability or by switching to oxidise FAs.
Insulin regulation of energy metabolism

From an energy metabolism point of view, the flow of

different substrates to tissues for oxidation or storage is

largely under the control of the circulating hormone

insulin. After a meal, direct stimulation of the b-cells of the

islets of Langerhans of the pancreas by nutrients (glucose,

FAs and amino acids) increases insulin release into the

circulation. Certain gut hormones (GLP1 and G-1-P) can

also augment insulin secretion, as can neural signals from

the brain (Thorens 2011). Insulin has many stimulatory

and inhibitory actions in different tissues mediated by a

complex intracellular signalling pathway, but for the

purpose of this discussion, the actions of insulin to

stimulate glucose uptake and metabolism in muscle and

regulate FA metabolism will be a major focus. The failure

of insulin to appropriately regulate glucose and FA

metabolism is termed insulin resistance, and this con-

dition is most frequently observed in the muscle and liver

of overweight or obese individuals (Eckardt et al. 2011).

Insulin resistance is considered a significant predisposing
Published by Bioscientifica Ltd
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factor for the development of type 2 diabetes (T2D) and

therefore there is considerable research effort put into

determining the mechanistic relationship between excess

lipid accumulation (obesity) and insulin resistance,

particularly in muscle. Studies from over 20 years ago

first showed that triglyceride accumulation in the muscle

of high-fat diet-fed rats coincided with insulin resistance

(Storlien et al. 1987, Kraegen et al. 1991), thereby

establishing the hypothesis that insulin resistance is

causally related to triglyceride accumulation in muscle.

Since then, the relationship between muscle lipid

accumulation and insulin resistance has also been

established in humans, and many mechanisms have

been put forward to explain how lipid accumulation

could generate insulin resistance (Bosma et al. 2012,

Samuel & Shulman 2012). Over the last decade, the

major challenge has been determining whether these

proposed mechanisms are universal or specific to the

model of lipid-induced insulin resistance being studied. It

is also possible that different mechanisms are important at

different times during the development of insulin resist-

ance and that some proposed mechanisms depend on the

experimental methods used to assess insulin action.
Methods for assessing insulin action in muscle

All discussions of the relationship between increased fat

metabolism and insulin action are dependent on the

methodology used to assess insulin resistance and the

assumptions associated with different methodologies. As

has been mentioned previously, nearly all investigations

of lipid-induced insulin resistance in rodent models utilise

high-fat diet feeding to increase adiposity, but the

methods of assessing insulin action can be quite varied

and rely on glucose tolerance tests or insulin tolerance

tests and less frequently (because of the technical

difficulty) on hyperinsulinaemic–euglycaemic clamps.

Various technical considerations of glucose and insulin

tolerance tests must be considered when discussing the

metabolic implications of these tests for muscle insulin

action. The timing and route of administration of

glucose and duration of fast before glucose adminis-

tration influence the results of glucose tolerance tests

(Andrikopoulos et al. 2008, McGuinness et al. 2009), and

our recent studies suggest that changes in glucose

tolerance may reflect changes in lipid content and insulin

action in the liver more than insulin action in muscle,

especially in the initial stages of fat accumulation after

starting a high-fat diet (Montgomery et al. 2013, Turner

et al. 2013). Insulin tolerance tests were devised largely to
http://joe.endocrinology-journals.org
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assess the effectiveness of counter-regulatory mechanisms

in response to insulin-induced hypoglycaemia and

therefore the utility of these tests to assess peripheral

insulin action is debatable. This is particularly the case

when conclusions about insulin effectiveness are related

to glucose measurements in the later half of the test

(30–90 min) when the injected insulin has largely been

cleared or when there is a difference in basal glycaemia and

results are expressed as % basal (McGuinness et al. 2009).

Neither glucose tolerance nor insulin tolerance tests give

specific data regarding insulin effectiveness in muscle,

although several methodological variations have used

concurrent injection of radioactive tracers to assess glucose

clearance into muscle during a glucose tolerance or insulin

tolerance test (Crosson et al. 2003, Cooney et al. 2004).

The hyperinsulinaemic–euglycaemic clamp with glu-

cose tracer administration gives the most reproducible

assessment of muscle glucose clearance in response to

constant insulin stimulation and constant glucose avail-

ability (Ayala et al. 2006, Wasserman et al. 2011). This

technique relies on plasma insulin levels (not insulin

infusion rates) during the comparison of the clamp being

matched between the groups. In many studies, plasma

insulin levels during the clamp are not reported, making

the assessment of muscle insulin action difficult

(Chapman et al. 2010, Laskewitz et al. 2010, Parlevliet

et al. 2010). In vitro assessment of insulin effectiveness in

isolated soleus or extensor digitorum longus muscle is also

often used to demonstrate the effects of FA exposure

(Thompson et al. 2000, Alkhateeb et al. 2007), and

although this methodology provides reproducible

comparisons between control and treatment muscle, it is

subject to all the assumptions of comparing the in vitro

situation with the in vivo situation (e.g. reliance on

diffusion and not on perfusion). While all the above

methods can give useful information about the effects of

muscle lipid accumulation on insulin action, this infor-

mation can be specific for the test employed. Even the data

obtained from hyperinsulinaemic–euglycaemic clamp

studies describe fluxes measured after at least an hour of

exposure to constant insulin stimulation and constant

glucose availability, a situation that is unlikely to ever

exist in the normal 24-h feeding–fasting cycle. Therefore,

it would seem important to consider the method used to

demonstrate a difference in insulin action with lipid

accumulation, when assessing the relevance of various

mechanisms to reduced glucose metabolism in muscle

when no restrictive experimental conditions (e.g. in vitro

assessment, constant infusion and i.p. delivery) have been

applied to the ‘free-living’ system.
Published by Bioscientifica Ltd
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Linking intramyocellular triglyceride content
and insulin action

As has been mentioned above, the association between

intramyocellular triglyceride (IMTG) content and insulin

resistance is now well established in animals and obese

humans, and most studies investigating the mechanisms

of insulin resistance in muscle use high-fat diet rodent

models. It has also become standard practice in assessing

the phenotype of genetically manipulated mice to place

them on high-fat diets to investigate whether there is any

impact (favourable or detrimental) of gene manipulation

on glucose and energy homoeostasis. There is a reasonable

assumption that, independent of genetic background in

animals or humans, overconsumption of energy-dense

diets plays a major role in the accumulation of fats and

development of metabolic derangements in muscle. In

humans, overconsumption of energy-dense diets for a few

weeks is enough to increase fat mass and have detrimental

effects on whole-body insulin action (Samocha-Bonet et al.

2010). In mice, high-fat feeding for as little as a few days

can impair glucose tolerance (Turner et al. 2013) and 2–3

weeks of exposure to a high-fat diet is enough to observe

significant insulin resistance in muscle using in vitro

(Thompson et al. 2000) or in vivo (Turner et al. 2013)

assessment. Apart from the well-documented ‘athlete’s

paradox’ where increased IMTG content is associated with

improved insulin action (Coen & Goodpaster 2012), most

interventions that change insulin action are associated

with reciprocal changes in IMTG content. Studies that

improved insulin sensitivity by low-calorie diets in

patients with T2D were accompanied by a reduction in

IMTG content (Jazet et al. 2008, Lara-Castro et al. 2008).

Insulin resistance associated with ageing (Nakagawa et al.

2007), growth hormone administration (Krag et al. 2007)

and post-burn trauma (Cree & Wolfe 2008) has been

reported to be associated with increased IMTG content.

Current opinion is reasonably clear on the fact that IMTG

is a useful marker of the level of cytosolic lipid

accumulation, but it is more likely that active lipid

metabolites such as LCACoAs, DAGs and ceramides or

intermediates of FA oxidation pathways interfere with

insulin action via a variety of potential mechanisms

(Fig. 2). These mechanisms are largely based on the idea

that insulin resistance in muscle is the result of reduced

transduction of the insulin signal through the phos-

phorylation cascade leading to the translocation of the

glucose transporter GLUT4 to the sarcolemmal membrane

(Stockli et al. 2011). A significant body of work in the 1990s

using nuclear magnetic resonance has identified glucose
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transport/phosphorylation and glycogen synthesis as

major defects in FA-induced insulin resistance in humans

(Shulman et al. 1990, Roden et al. 1996). Since that time,

research into the molecular mechanism of FA-induced

insulin resistance in muscle has mainly focused on linking

excess FAs to defects in the insulin signalling pathways

that regulate glucose uptake. However, there are some

established and some more speculative mechanisms that

also link increased FA metabolism with reduced insulin

action, and these are discussed in the subsequent sections.
Lipid intermediates, inflammation and
insulin resistance

IMTGs are considered to be relatively benign with regard

to insulin resistance (Goodpaster et al. 2001), largely

because they are packaged into discrete lipid droplets

that are located within the cytoplasm and are thus

unlikely to directly interfere with proximal insulin

signalling (Fujimoto & Parton 2011). However, despite

the general consensus that IMTGs are metabolically inert,

it is possible that the expanded IMTG pool generates

intermediates of lipid metabolism that are more likely to

play a mechanistic role in the development of muscle

insulin resistance. In this respect, the bioactive lipid

metabolites DAG and ceramide are leading candidates.

The levels of both DAG (Turinsky et al. 1990, Turpin et al.

2009) and ceramide (Holland et al. 2007, Bruce et al. 2013)

are elevated in the muscle of obese insulin-resistant

rodents, and the earliest detectable defect in muscle

insulin sensitivity in high-fat diet-fed mice is associated

with the accumulation of these lipids (Turner et al. 2013).

While less is known about the role of these lipids in

humans, it has been reported that acute lipid-induced

insulin resistance is associated with muscle DAG accumu-

lation (Itani et al. 2002) and that ceramide levels are

elevated in the muscle of obese insulin-resistant individ-

uals (Amati et al. 2011). Furthermore, interventions that

enhance insulin action, such as exercise training, cause

reductions in muscle DAG and ceramide content (Bruce

et al. 2006).

Mechanistically, DAG and ceramide are potent signal-

ling molecules that may cause insulin resistance by

activating a cascade of serine/threonine kinases that

ultimately impinges upon insulin signalling (Summers

et al. 1998, Ruvolo 2003, Li et al. 2004). Specifically, DAG

accumulation is thought to impair insulin action via the

activation of novel protein kinase C (PKC) isoforms, which

subsequently inhibits insulin signal transduction to

glucose transport via serine phosphorylation of insulin
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receptor substrate 1 (IRS1; Yu et al. 2002, Li et al. 2004).

Ceramide has been reported to cause insulin resistance by

impairing insulin signalling at the level of Akt (Schmitz-

Peiffer et al. 1999, Bruce et al. 2006, Holland et al. 2007). In

addition, ceramide is a potent activator of inflammatory

molecules, including c-Jun N-terminal kinase (JNK;

Westwick et al. 1995) and nuclear factor kB/inducer of k

kinase (IKK) (Wang et al. 1999), which have been reported

to be associated with the development of muscle insulin

resistance (Itani et al. 2002, Sriwijitkamol et al. 2006,

Henstridge et al. 2012). However, while inflammation has

been proposed as a critical factor causing insulin resist-

ance, studies carried out by our group and other groups

suggest that inflammation is not involved in the initiation

of lipid-induced insulin resistance, but may be more

important in the exacerbation and maintenance of insulin

resistance once obesity is established (Lee et al. 2011,

Turner et al. 2013).

Although there is mounting evidence supporting a

role for DAG and ceramide in the regulation of insulin

sensitivity, it is important to highlight that the accumu-

lation of these lipids is not always associated with insulin

resistance. In fact, a recent study has found that total DAG
http://joe.endocrinology-journals.org
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content is actually elevated in the muscle of highly

insulin-sensitive endurance-trained athletes compared

with the skeletal muscle of obese individuals (Amati

et al. 2011). Furthermore, a positive correlation between

total muscle ceramide content and insulin sensitivity has

been reported (Skovbro et al. 2008). These data suggest a

more complex role for DAG and ceramide in the

regulation of insulin action (Amati et al. 2011) and

emphasise the importance of not only determining the

total content of these lipids but also examining specific

molecular species as well as their subcellular localisation,

as these are likely to be critical factors that influence the

relationship between lipids, insulin signalling and muscle

insulin sensitivity (Bergman et al. 2012).

While the bioactive lipid hypothesis has gained strong

support, an alternative concept linking the accumulation

of intermediates of mitochondrial FA oxidation with

muscle insulin resistance has gained attention (Koves

et al. 2008). This model proposes that lipid oversupply

drives an increase in mitochondrial b-oxidation that

exceeds the capacity of the Krebs cycle, leading to the

accumulation of by-products of FA oxidation (Koves et al.

2008). This is supported by studies demonstrating an
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increase in incomplete FA oxidation and an accom-

panying increase in intramuscular acylcarnitine levels in

obese rodents (Koves et al. 2008). While data in humans

are currently limited, there is evidence that acylcarnitine

does accumulate in the muscle of humans in response to a

high-fat diet (Putman et al. 2003). However, it is not clear

whether acylcarnitine plays a direct role in the modu-

lation of skeletal muscle insulin sensitivity by disrupting

signalling processes or whether it simply reflects a state of

mitochondrial stress. Unravelling the role of acylcarnitine

in muscle insulin sensitivity will no doubt be a focus of

future research.
Mitochondrial dysfunction, reactive oxygen
species and insulin resistance

Another prominent theory on the aetiology of insulin

resistance implicates abnormalities in mitochondrial

function as a major causative factor leading to reductions

in insulin sensitivity. More specifically, defects in mito-

chondrial metabolism have been suggested to lead to

inadequate substrate oxidation, precipitating a build-up of

intracellular lipid metabolites, impaired insulin signalling

and the subsequent development of insulin resistance

(Lowell and Shulman 2005, Kim et al. 2008, Turner &

Heilbronn 2008, Samuel & Shulman 2012).

The initial studies that set the platform for this theory

in the late 1990s showed that there was reduced

mitochondrial enzyme activity and decreased fat oxi-

dation in the skeletal muscle of obese, insulin-resistant

subjects and in individuals with T2D (Kelley et al. 1999,

Simoneau et al. 1999, Kelley & Mandarino 2000, Kim et al.

2000). Kelley et al. (2002) also reported that mitochondrial

size, as assessed by electron microscopy, was decreased in

the muscle of obese subjects with insulin resistance and/or

T2D. In the following year, two prominent microarray

studies were published, describing a coordinated down-

regulation of genes involved in mitochondrial biogenesis

and oxidative phosphorylation in subjects with T2D and,

importantly, also in non-diabetic individuals with a family

history of T2D (Mootha et al. 2003, Patti et al. 2003).

In the ensuing decade since the publication of these

landmark studies, many groups have reported defects in

different mitochondrial parameters in the skeletal muscle

of a range of different insulin-resistant populations (obese,

T2D and PCOS). These include decreased mRNA and/or

protein expression of mitochondrial genes/proteins

(Morino et al. 2005, Heilbronn et al. 2007, Skov et al.

2007, Hwang et al. 2010), reductions in mitochondrial

DNA (mtDNA) levels (Ritov et al. 2005, Boushel et al.
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2007), lower oxidative enzyme activity (Ritov et al. 2005,

2010, Heilbronn et al. 2007) and a reduction in mito-

chondrial content measured by electron microscopy

(Kelley et al. 2002, Morino et al. 2005, Ritov et al. 2005).

Functional studies in muscle biopsy samples or in vivo

using magnetic resonance spectroscopy have also reported

decreases in mitochondrial oxidative capacity in insulin-

resistant individuals (Petersen et al. 2003, 2004, Befroy

et al. 2007, Mogensen et al. 2007, Phielix et al. 2008).

Collectively, all these studies suggest that at some level,

mitochondria in insulin-resistant individuals are not as

effective at burning fuel substrates in muscle and this

compromises insulin action.

Despite the large body of evidence described above,

this area is controversial, as many studies report a

dissociation between insulin resistance and mitochondrial

dysfunction. For example, providing rodents with excess

fat in their diet leads to an enhancement of mitochondrial

oxidative capacity in muscle while at the same time

inducing insulin resistance (Turner et al. 2007, Hancock

et al. 2008, Stephenson et al. 2012). Several lines of mice

with genetic manipulations that cause compromised

mitochondrial function in muscle do not exhibit insulin

resistance (Vianna et al. 2006, Wredenberg et al. 2006,

Handschin et al. 2007, Pospisilik et al. 2007). Conversely,

two separate lines of muscle-specific Pgc1a (Ppargc1a)

transgenic mice displayed a significant enhancement in

the markers of mitochondrial content and yet were insulin

resistant due to excessive FA delivery and reduced GLUT4

(SLC2A4) expression in muscle (Miura et al. 2003, Choi

et al. 2008). A growing number of studies in humans have

also reported intact mitochondrial function in various

insulin-resistant populations (De Feyter et al. 2008, Trenell

et al. 2008, Lefort et al. 2010, van Tienen et al. 2012,

Fisher-Wellman et al. 2013). Collectively, these studies

suggest that mitochondrial dysfunction in muscle is not

an obligatory factor required for the accumulation of

intramuscular lipids and the development of insulin

resistance. Furthermore, it has also been argued that as

muscle has such a high amount of ‘spare’ capacity to

elevate substrate oxidation over basal levels (Bangsbo

2000), it is questionable whether mitochondrial defici-

encies of the magnitude reported in some insulin-resistant

subjects would have any impact on the rate of FA

oxidation (and lipid accumulation) when energy require-

ments are relatively low (e.g. normal free-living con-

ditions) (Hancock et al. 2008).

In addition to their role as major sites for energy

transduction, mitochondria are also known to be a major

source of reactive oxygen species (ROS), which are
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produced as a by-product of normal metabolic reactions

(Andreyev et al. 2005). ROS have the capacity to damage

macromolecules, and when the production of these

reactive species is in excess of the antioxidant defences, a

state of oxidative stress results. FA catabolism is known to

promote mitochondrial ROS production (St-Pierre et al.

2002, Anderson et al. 2009, Seifert et al. 2010), and studies

carried out by several groups have shown that in cultured

cell models, genetic or diet-induced obese rodents, and in

human subjects fed a high-fat diet, there is increased

mitochondrial ROS production in muscle in association

with insulin resistance (Houstis et al. 2006, Anderson et al.

2009, Hoehn et al. 2009, Hey-Mogensen et al. 2012,

Fisher-Wellman et al. 2013). Importantly, many studies

have shown that insulin action is improved when

mitochondrial ROS production is attenuated (Houstis

et al. 2006, Anderson et al. 2009, Hoehn et al. 2009,

Boden et al. 2012), indicating a potentially important role

for reactive species generation in this organelle in insulin

resistance. While the exact mechanism linking mito-

chondrial ROS with insulin resistance is not resolved, it

has been proposed that insulin resistance may be caused

by ROS-dependent changes in stress-sensitive Ser/Thr

kinases, leading to perturbed insulin signalling, although

this requires verification (Fisher-Wellman & Neufer 2012).
Substrate competition and reduced
insulin action

Before the elucidation of the insulin signalling pathway

and recognition of the complex processes involved in the

translocation of GLUT4 from intracellular vesicles to

sarcolemmal membrane, there was a large amount of

experimental data pointing to significant FA regulation of

glucose metabolism at the level of PDH (Randle et al. 1963,

Randle 1998). If humans, animals or in vitro preparations

of muscle are exposed to an increased availability of FAs in

the presence of glucose, the oxidation of FAs increases and

the oxidation and uptake of glucose decrease (Boden et al.

1994, Vaag et al. 1994). On the other hand, reduction of

the availability of FAs by inhibiting lipolysis (Vaag et al.

1991, Lim et al. 2011) and blocking FA entry into the

mitochondria reduces FA oxidation and increases glucose

uptake and oxidation (Oakes et al. 1997, Timmers et al.

2012, Keung et al. 2013), although there are some reports

that prolonged inhibition of FA oxidation can lead to

reduced glucose uptake (Dobbins et al. 2001). Although

the initial observations of Randle and colleagues on the

reciprocal relationship between glucose and FA meta-

bolism were made 50 years ago, the idea that increasing or
http://joe.endocrinology-journals.org
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reducing FA availability will reciprocally affect glucose

utilisation is no less valid today. Therefore, in the context

FA-induced insulin resistance, a role for substrate compe-

tition and regulation at the level of PDH should not be

overlooked.
Reassessment of the role of insulin signalling
in FA-induced insulin resistance

As outlined in other sections of this review, the current

dogma suggests that the major mechanisms for FA-

induced insulin resistance in muscle involve active lipid

species interfering with insulin signalling via the acti-

vation of various serine kinases (Fig. 2). The canonical

insulin signalling cascade comprises scaffolding proteins

(e.g. IRS1) and enzymes (e.g. PI3 kinase, Akt and GSK3),

and the activity of these proteins is modulated by tyrosine

and/or serine phosphorylation. DAG via the activation of

PKC and inflammatory factors via the activation of the

serine kinases JNK and IKK are thought to serine

phosphorylate and reduce the insulin receptor-mediated

tyrosine phosphorylation of IRS1 (Samuel & Shulman

2012). Mitochondrial insufficiency and ROS are also

thought to feedback and impinge on the efficiency of

insulin signalling via the activation of regulatory kinases.

While there are many studies showing clear differences in

the phosphorylation status of various insulin signalling

proteins after insulin stimulation in control and FA-

exposed or obese or high-fat diet-fed muscle, these

changes are not always consistent. For example, a change

in Akt phosphorylation is not always accompanied by a

detectable change in downstream GSK3 or AS160 phos-

phorylation or upstream changes in IRS1 phosphorylation

(Frangioudakis & Cooney 2008, Hoehn et al. 2008, Tonks

et al. 2013). There are a number of studies reporting that

insulin-stimulated Akt activation is in fact not impaired in

the muscle of obese individuals with insulin resistance, of

glucose-intolerant first-degree relatives of patients with

T2D and of patients with T2D (Kim et al. 1999, Storgaard

et al. 2004). Furthermore, in rats made insulin resistant by

5 h of hyperlipidemia/hyperinsulinaemia (Hoy et al. 2009)

or in isolated soleus muscle made insulin resistant by

palmitate incubation (Alkhateeb et al. 2007), no defect in

insulin-stimulated Akt phosphorylation was reported.

Finally, reduction of IRS1 levels in muscle by 60% by

direct in vivo genetic manipulation did not result in

impaired insulin action (Cleasby et al. 2007).

This dissociation between measured changes in

insulin-stimulated glucose flux and insulin effects on

signalling proteins has a number of implications. First, it
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might highlight the technical difficulties of obtaining

reliable, quantitative data on protein modification using

the essentially non-quantitative technique of immuno-

blotting. The ability to detect differences with this

methodology can also depend on the affinity of individual

antibodies, and the amount of phosphorylation does not

necessarily correlate linearly with the activity of the

signalling protein. A good example of this is provided by

two studies showing that in adipocytes maximal insulin-

stimulated glucose transport and GLUT4 translocation are

achieved when only 10–20% of the total IRS1 and Akt

is phosphorylated (Whitehead et al. 2001, Hoehn et al.

2008). If a similar situation exists in muscle, the

physiological importance of statistically significant

differences of 10–20% in the phosphorylation of signalling

intermediates could be difficult to assess. The introduction

of mass spectrometry techniques to analyse changes in

global protein phosphorylation in response to insulin, as

has been applied in adipocytes (Humphrey et al. 2013),

could be helpful in this regard. Another possibility is that

phosphorylation is not the only post-translational modifi-

cation of proteins involved in the generation of lipid-

induced insulin resistance. Recently, the emergence of

nitrosative modifications (White et al. 2010), reversible

acetylation, malonylation and succinylation of proteins in

central metabolic pathways has revealed new possibilities

by which increased FA metabolism could influence

metabolic fluxes (Newman et al. 2012, Park et al. 2013).

Similarly, reversible modification of proteins by O-linked

N-acetylglucosamine has been proposed to have a signi-

ficant impact on metabolism in response to nutrient levels

(Bond & Hanover 2013, Ruan et al. 2013).
Circadian metabolism and insulin resistance

Another area of research that is increasingly realised to

have a significant impact on metabolic disease is circadian

biology. Daily patterns of activity and rest are historically

aligned with feeding and fasting and changes in energy

metabolism are intrinsically linked to the light/dark cycle

(Bass 2012). The suprachiasmatic nucleus in the brain is

considered to be the master regulator of circadian

behaviour because of its ability to coordinate inputs

from the environment (light, food, exercise and tempera-

ture), but it is now clear that every tissue has the molecular

components that comprise the clock, raising the possi-

bility that circadian processes in tissues could be regulated

directly by some inputs. Some mouse models with genetic

manipulations of core clock genes have altered circadian

rhythms and are more prone to developing obesity (Turek
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et al. 2005, Kennaway et al. 2007, Paschos et al. 2012), and

manipulation of feeding schedules in mice and rats has

been shown to have significant effects on adiposity, energy

expenditure and glucose homoeostasis (Bray et al. 2013,

Coomans et al. 2013, Reznick et al. 2013). If there is an

underlying rhythm to metabolism in muscle driven by

the molecular clock (Lefta et al. 2011), the timing of

experiments over the normal 24-h period might be critical

to a proper understanding of how repeated daily exposure

to a high-fat diet leads to lipid accumulation and insulin

resistance in muscle. In fact, a recent report has suggested

that the time of day can have a significant effect on the

data obtained from euglycaemic-hyperinsulinaemic

clamps in mice (Shi et al. 2013), and as rodents have an

phase opposite to that of humans with regard to activity

and sleep and feeding and fasting, the relevance of

daylight experiments in nocturnal animals to human

physiology requires renewed debate.
Summary and perspective

The correlation between increased FA availability and

reduced insulin-stimulated glucose metabolism is well

established. Despite this clear relationship, to date, there

has been no unifying mechanism that explains lipid-

induced reductions in insulin action under all circum-

stances. The most described mechanisms are that toxic

lipid intermediates and/or activation of inflammatory and

stress signalling pathways act to decrease the phosphory-

lation and function of proteins in the insulin signalling

pathway, and this explains the decreased insulin-

stimulated glucose uptake observed with lipid accumu-

lation. However, there are an increasing number of

experimental situations where reduced effects of insulin

in muscle have been observed without significant changes

in the phosphorylation of signalling proteins or where

differences in phosphorylation are only observed with

stimulation by supraphysiological insulin concentrations.

This suggests that other control mechanisms or other

forms of protein modification may predominate depend-

ing on the exact experimental conditions used to examine

insulin resistance (e.g. bolus insulin injections, hyper-

insulinaemic clamps and glucose or lipid infusion).

Figure 3 summarises some of the key control points

other than insulin signalling for GLUT4 translocation that

could alter the balance between glucose and FA meta-

bolism and affect insulin-stimulated glucose disposal. For

example, utilisation of glucose and FAs is dependent on

their availability in the circulation and delivery to the

muscle tissue, and changes in microvasculature occur with
Published by Bioscientifica Ltd
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obesity and contribute to muscle insulin resistance

(St-Pierre et al. 2010, Premilovac et al. 2013). Other work

(Furler et al. 1991, Wasserman 2009) has established that

glucose transport into muscle is not rate limiting for

glucose metabolism under all conditions. The phosphory-

lation of glucose by hexokinase and the pathway for

conversion of glucose-6-phosphate to glycogen are subject

to regulation by glucose-6-phosphate and glycogen

respectively, and decreased glucose phosphorylation and

glycogen synthesis will affect glucose uptake (Fueger et al.

2007, Bouskila et al. 2010). Another well-documented

node regulating the metabolism of glucose is centred on

the activity of PDH. The activity of this enzyme complex is

inhibited by phosphorylation via PDH kinase 4 (PDK4).

Interestingly, the amount of PDK4 in muscle is signi-

ficantly increased in high-fat diet-fed, insulin-resistant

animals and PDK4 is activated by acetyl CoA, providing

evidence that this regulatory node could significantly
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Nodes of control of glucose metabolism other than insulin-stimulated

translocation of GLUT4 that could be influenced by the excess availability

of FAs. Utilisation of glucose and FAs is dependent on their availability in

the circulation and delivery to the muscle tissue. The phosphorylation of

glucose and conversion to glycogen are regulated by substrate availability

and G-6-P concentration. PDH is a critical regulator balancing glucose use

and FA oxidation to support energy requirements. The regulation of FA
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affect glucose metabolism in muscle as hypothesised by

Newsholme and Randle many years ago (Randle et al.

1963) and many others since (Holness & Sugden 2003,

Hue & Taegtmeyer 2009).

FA metabolism in muscle can also be regulated at the

membrane by transporter proteins (such as CD36), and at

activation to acyl CoA by acyl CoA synthase (Glatz et al.

2010). The partitioning of FAs towards triglyceride storage

or mitochondrial oxidation may depend on the activity of

key enzymes such as glycerol phosphate acyltransferase

and adipose triglyceride lipase (Greenberg et al. 2011, Watt

& Hoy 2012). The entry of long-chain FAs into the

mitochondria for oxidation is thought to be largely

regulated by the activity of CPT1. The activity of CPT1 is

modulated allosterically by malonyl CoA, and numerous

studies, including our recently published papers using

genetic and pharmacological interventions (Bruce et al.

2009, Hoehn et al. 2010), have manipulated CPT1B, AMPK
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sequestration in, or release from, muscle fat droplets can control the level

of bioactive lipid species. The regulation of FA metabolism at the AMPK–

ACC2–malonyl CoA–CPT1 axis also has a significant impact on the balance

between FA and glucose metabolism. There are a number of newly

recognised post-translational modifications that can occur on key

metabolic or signalling proteins and would be expected to be influenced

by changes in the availability and metabolism of FAs.
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and ACC activity to increase FA oxidation. Depending on

the experimental design used, acutely increasing fatty

oxidation in muscle can decrease glucose utilisation

(Hoehn et al. 2010), while chronically increasing FA

oxidation in muscle via CPT1 (CPT1B) overexpression

can subsequently improve insulin-stimulated glucose

uptake in fat-fed animals (Bruce et al. 2009). Interestingly,

acute blockade of FA oxidation increases insulin-

stimulated glucose uptake (Oakes et al. 1997), while

chronic blockade of FA oxidation has been shown to be

associated with decreased insulin sensitivity (Dobbins

et al. 2001). These differences in acute and chronic

responses when substrate metabolism is manipulated

may be reconciled by considering the fact that energy

metabolism is not constant in animals and humans, but

has a substantial diurnal variation that is highly relevant

to designing appropriate experiments to investigate

lipid-induced insulin resistance.

In conclusion, it may be unrealistic to expect that a

unifying mechanism may explain all situations where

there is reduced glucose metabolism in muscle in response

to insulin, as multiple factors may contribute to the

establishment and long-term maintenance of insulin

resistance in this tissue. With the emergence of powerful

techniques for determining global changes in gene

expression, protein modifications and metabolite profiles,

it will hopefully become possible to gain a more

comprehensive idea of the factors and pathways that

may contribute to the aetiology of lipid-induced insulin

resistance in muscle.
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