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Abstract
Alterations in adequate energy balance maintenance result in serious metabolic

disturbances such as obesity. In mammals, this complex process is orchestrated by multiple

and distributed neuronal circuits. Hypothalamic and brainstem neuronal circuits are critically

involved in the sensing of circulating and local factors conveying information about the

energy status of the organism. The integration of these signals culminates in the generation

of specific and coordinated physiological responses aimed at regulating energy balance

through the modulation of appetite and energy expenditure. In this article, we review

current knowledge on the homeostatic regulation of energy balance, emphasizing recent

advances in mouse genetics, electrophysiology, and optogenetic techniques that have

greatly contributed to improving our understanding of this central process.
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Introduction
The regulation of appetite and body weight is an intricate

process controlled by redundant and distributed neural

systems that integrate a myriad of cognitive, hedonic,

emotional, and homeostatic cues to precisely regulate

systemic energy balance through behavioral, autonomic,

and endocrine outputs. These sophisticated biological

programs are influenced by multiple factors, including

environmental, genetic, and epigenetic mechanisms. The

immense complexity of these systems illustrates the

biological importance of adequate nutrient and energy

balance, a process that has been evolutionarily conserved

and refined to guarantee appropriate adiposity levels.

Despite the precision of these systems in matching energy

demand with energy expenditure, contemporary, and

lifestyle factors are themaincausesof theprevailingobesity
epidemics. The present review attempts to summarize

current understanding of the anatomy, neurochemistry,

functions, and interactions of relevant neural circuits

involved in the homeostatic regulation of energy balance.
The homeostatic system: hypothalamus and
brainstem

The hypothalamus: neuronal anatomy, nuclei, and

neuropeptides

Seminal lesioning studies conducted in rodents during

the 1940s and 1950s highlighted the importance of the

hypothalamus in the regulation of body weight. Since

then, extensive experimental evidence and extraordinary
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progress in understanding the neurobiology of obesity

have firmly established the mediobasal hypothalamus as a

fundamental nexus in the neuronal hierarchy controlling

whole-body energy balance. The hypothalamus is con-

stituted by distinct hypothalamic nuclei including the

arcuate nucleus (ARC), the paraventricular nucleus (PVN),

the lateral hypothalamic area (LHA), the dorsomedial

nucleus (DMN), and the ventromedial nucleus (VMN).

Arcuate nucleus The ARC is a very important area

of the CNS involved in the control of energy homeostasis. It

is located below the VMN, on both sides of the third

ventricle, and immediately adjacent to the median emi-

nence (ME). This area has a semi-permeable blood–brain

barrier (BBB; Broadwell & Brightman 1976), and thus it is

strategically positioned to sense hormonal and nutrient

fluctuations in the bloodstream. In the ARC, there are

at least two major populations of neurons controlling

appetite and energy expenditure: i) a subset of neurons

that coexpress orexigenic neuropeptideY (NPY) andagouti-

related peptide (AGRP) and ii) a population of neurons

that coexpress the anorexigenicneuropeptides cocaine- and

amphetamine-regulated transcript (CART (CARTPT)) and

a-melanocyte-stimulating hormone (a-MSH, a product of

proopiomelanocortin (POMC) processing). These two

populations of neurons (hereafter referred to as AgRP and

POMC respectively), together with downstream target

neurons expressing the melanocortin receptor 4 (MC4R)

and MC3R, constitute the central melanocortin system.

This neuronal circuit is crucial for sensing and integrating a

number of peripheral signals allowing for a precise control

of food intake and energy expenditure (see section ‘ARC

neuronal circuits: POMC, AgRP, and RIPCre neurons’).

NPY is widely expressed throughout the CNS, but it is

most densely localized in the ARC in the hypothalamus

(Gehlert et al. 1987). The expression and release of ARC

NPY respond to changes in energy status, being reduced

under feeding conditions and increased under fasting

conditions (Beck et al. 1990, Kalra et al. 1991). Increasing

NPY tone pharmacologically results in hyperphagia and

reduced thermogenesis of brown adipose tissue (BAT),

associated with diminished activity of the thyroid axis

(Clark et al. 1984, Stanley et al. 1986, Egawa et al. 1991).

Although NPY acts at five different receptors (Y1, Y2, Y3,

Y4, and y6), genetic and pharmacological studies suggest

that postsynaptic Y1 and Y5 receptors mediate the effects

of NPY on positive energy balance (Nguyen et al. 2012,

Sohn et al. 2013).

AGRP is also an orexigenic neuropeptide that is

exclusively expressed in the ARC, where it colocalizes
http://joe.endocrinology-journals.org
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with NPY and the neurotransmitter g-aminobutyric acid

(GABA; Broberger et al. 1998, Cowley et al. 2001). The

central administration of AGRP or its genetic over-

expression stimulates food intake, reduces energy

expenditure, and causes obesity (Graham et al. 1997,

Ollmann et al. 1997, Small et al. 2003). Interestingly,

lasting orexigenic effects (over days) after AGRP delivery

have been reported (Hagan et al. 2000).

AgRP neurons express receptors for peripheral

hormonal signals such as insulin (Marks et al. 1990),

leptin (Elmquist et al. 1998), and ghrelin (Willesen et al.

1999). These neurons send projections mainly into the

PVN, DMN, and LHA. Despite the well-documented effects

of NPY and AGRP as positive modulators of energy

balance, genetic studies have yielded conflicting results.

For example, Agrp- and Npy-knockout (KO) mice failed to

exhibit alterations in body weight or feeding behavior

(Palmiter et al. 1998, Qian et al. 2002, Corander et al.

2011). However, the ablation of AgRP neurons in adults

leads to uncontrolled anorexia but is well tolerated in

neonates, indicating the existence of developmental

compensations (Bewick et al. 2005, Gropp et al. 2005,

Luquet et al. 2005).

CART is widely expressed in the brain, but it is

particularly abundant in the hypothalamus, and it coloca-

lizes (O95%) with POMC in the ARC (Elias et al. 1998). Its

expression is enhanced under feeding conditions and

reduced under fasting conditions (Kristensen et al. 1998),

and it has been shown that i.c.v. infusion of CART inhibits

food intake, while antibodies against CART reverse this

effect (Kristensen et al. 1998). Furthermore, CART also

stimulates the thermogenesis of BAT (Kotz et al. 2000).

However, Cartpt-deficient mice exhibit no alterations in

food intake or body weight when fed with a standard diet,

but develop obesity after being fed with a high-fat diet

(HFD;Asnicar et al. 2001). Interestingly, andcontrary to the

prevailing anorexigenic view, other studies have shown

that under certain experimental conditions CART may

stimulate food intake (Abbott et al. 2003, Kong et al. 2003).

Collectively, results regarding the effects of CART on

feeding behavior are inconclusive and indicate anatomi-

cally divergent roles for this neuropeptide.

POMC is a prohormone precursor that is cleaved into

several bioactive peptides in the hypothalamus, including

a-MSH, which exerts potent anorexigenic effects by

binding to MC3R and MC4R (Mercer et al. 2013). The

levels of Pomc transcripts and a-MSH are increased under

feeding conditions and decreased under fasting conditions

(Schwartz et al. 1997). The i.c.v. administration of a-MSH

or its delivery into the PVN suppresses food intake and
Published by Bioscientifica Ltd
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reduces body weight (Poggioli et al. 1986, Wirth et al.

2001). Genetic manipulation of the Pomc gene leading to

the overexpression of a-MSH has been shown to cause

anti-obesity effects in genetic and diet-induced obesity

(DIO) models (Mizuno et al. 2003, Savontaus et al. 2004,

Lee et al. 2007). A key role for POMC in whole-body energy

homeostasis is evident, as mice lacking Pomc, melano-

cortin peptides, or POMC neurons develop obesity

(Yaswen et al. 1999, Gropp et al. 2005, Xu et al. 2005a,

Smart et al. 2006). Furthermore, mutations in the POMC

gene have been reported to be associated with morbid

obesity in humans (Krude et al. 1998, Lee et al. 2006).

GABAergic and glutamatergic subpopulations of POMC

neurons have been described, although their functional

roles are unclear (Mercer et al. 2013).

Paraventricular nucleus The PVN is located in the

anterior hypothalamus, just above the third ventricle, and

expresses high levels of MC3R/MC4R. It receives inner-

vation not only from the AgRP and POMC neurons of the

ARC but also from extrahypothalamic regions such as

the nucleus of the tractus solitarius (NTS). The PVN is

an important integration site involved in whole-body

energy homeostasis, as shown by the diverse afferent

inputs and its high sensitivity to the administration of

endogenous neuropeptides involved in the regulation

of food intake such as NPY, AGRP, and a-MSH, among

others (Stanley et al. 1986, Kim et al. 2000). Part of these

effects are mediated by a subset of neurons that express

thyrotropin-releasing hormone (TRH), which are activated

by a-MSH and inhibited by AGRP (Fekete et al. 2000, 2004).

Another relevant subset of neurons express corticotrophin-

releasing hormone (CRH), which are directly involved

in the control of energy balance throughAGRP innervation

or indirectly through the regulation of adrenal gluco-

corticoids controlling the expression of POMC (Richard

& Baraboi 2004).

Lateral hypothalamus area The LHA plays a critical

role in the mediation of orexigenic responses, a function

that can be significantly attributed to orexin andmelanin-

concentrating hormone (MCH) neurons. Orexin neurons

produce orexin A and orexin B from prepro-orexin, the

expression of which is increased under fasting conditions

(Sakurai et al. 1998). The central administration of orexins

not only increases food intake (Sakurai et al. 1998, Dube

et al. 1999), but also promotes behavioral responses to

food reward and increases arousal (Cason et al. 2010).

Orexin neurons project not only within the LHA, ARC,

PVN, and NTS, but also into other regions involved
http://joe.endocrinology-journals.org
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in additional physiological functions such as body

temperature and wakefulness control, among others

(Peyron et al. 1998). Similarly, fasting enhances the

expression of Mch (Pmch) mRNA and its i.c.v. adminis-

tration or genetic overexpression causes an orexigenic

output (Qu et al. 1996, Ludwig et al. 2001). Conversely,

mice with reduced MCH tone or disruption of the MCH1

receptor are lean (Marsh et al. 2002).

Dorsomedial nucleus The DMN is involved in a

range of physiological processes, including appetite,

thermoregulation, stress, and circadian rhythms. It

receives projections from most of the hypothalamic

nuclei, especially the ARC, and sends projections into

the PVN and LHA. A number of neuropeptides (such as

NPY and CRH) as well as receptors for peptides involved in

the control of appetite and energy balance are expressed

within the DMN. Increased expression of NPY in the

DMN has been reported in several rodent models of

obesity (Guan et al. 1998, Bi et al. 2001), and it may play

a significant role in the regulation of thermogenesis and

the development of DIO (Chao et al. 2011).

Ventromedial nucleus The AgRP and POMCneurons

of the ARC project into the VMN. In turn, VMN neurons

project into hypothalamic and extrahypothalamic areas

such as the brainstem (Cheung et al. 2013). Laser-

microdissection studies have identified a number of

VMN-enriched genes (Segal et al. 2005), including ster-

oidogenic factor 1 (Sf1 (Nr5a1)), which has been directly

implicated in the development of the VMN (Parker et al.

2002, Davis et al. 2004). SF1-expressing neurons play

significant roles in the control of energy balance, as

demonstrated by themetabolic phenotypes of conditional

KOmice (Bingham et al. 2008, Zhang et al. 2008, Kim et al.

2011). Another abundantly expressed protein in the VMN

is the brain-derived neurotrophic factor (BDNF). The lack

of BDNF or its receptor (TRKB (NTRK2)) leads to hyper-

phagia and obesity in humans andmice (Lyons et al. 1999,

Yeo et al. 2004). In contrast, the central or peripheral

administration of BDNF results in the loss of body weight

and reduction in food intake through MC4R signaling

(Xu et al. 2003). The VMN also plays a key role in the

regulation of thermogenesis (Lopez et al. 2010, Kim et al.

2011,Martinez deMorentin et al. 2012,Whittle et al. 2012).
The brainstem

Brainstem neurons make key contributions to the control

of energy balance by processing energy status information
Published by Bioscientifica Ltd
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at four different levels: i) by sensing circulating meta-

bolites and hormones released by peripheral organs; ii) by

receiving vagal inputs from the gastrointestinal (GI) tract;

iii) by receiving neuronal inputs from midbrain and

forebrain nuclei that also detect and integrate energy-

related signals; and iv) by projecting into local brainstem

circuits and other regions of the brain to provide

information that will be integrated by these neurons to

control energy balance. Within the brainstem, the dorsal

vagal complex (DVC) is a keymodule for the integration of

energy-related cues by relying peripheral signals through

vagal afferents and projecting into the hypothalamus and

other relevant areas. The DVC comprises the dorsal motor

nucleus of the vagus, the NTS, and the area postrema (AP),

which has an incomplete BBB and therefore it is accessible

to peripheral signals.

The brainstem is constituted by heterogeneous popu-

lations of neurons, with distinct biophysical and neuro-

chemical properties, that express appetite-modulatory

neuropeptides such as tyrosine hydroxylase (TH), pro-

glucagon, CART, GABA, NPY, BDNF, and POMC, among

others. These neurons also express a variety of receptors

mediating the effects of some of the aforementioned

neuropeptides, indicating the existence of local circuits

that contribute to the regulation of ingestive behaviors.

In addition, receptors for a number of circulating hormones

such as leptin, ghrelin, glucagon-like peptide 1 (GLP1), and

cholecystokinin (CCK) have been described in brainstem

neurons or in vagal afferent projections to brainstem areas.

Vagal signaling from the GI tract is an important

afferent to the NTS, conveying information about luminal

distension, nutritional content, and locally produced

peptides via glutamate neurotransmission (Travagli et al.

2006). This vagal sensory and hormonal information will

be assimilated by second-order NTS neurons that project

into the hypothalamus and other basal forebrain areas to

elaborate precise outputs. The significance of the vagus

nerve transmission has been demonstrated through a

number of manipulations to eliminate or enhance its

activity. For example, chronic or acute vagus nerve

stimulation in rats leads to a reduction in body weight

and food intake, indicating that direct vagal afferent

interventions influence feeding behavior (Krolczyk et al.

2001, Gil et al. 2011). Vagal signaling also plays important

roles in the regulation of meal size and duration (Schwartz

et al. 1999).

The NTS receives inputs from descending projections

from the hypothalamus. In particular, ARC POMC

neurons project into the NTS, where high expression

levels of MC4R have been reported (Kishi et al. 2003).
http://joe.endocrinology-journals.org
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In addition to the release of a-MSH from ARC POMC

neurons, the NTS also receives melanocortin agonist

signals from a local population of w300 POMC neurons

(around 10% of the total number of POMC neurons;

Palkovits & Eskay 1987). Recent pharmacogenetic studies

have shown different functions and time scale effects of

ARC and NTS POMC neurons on food intake and

metabolism (Zhan et al. 2013). The importance of this

neuronal circuit is further demonstrated by hindbrain

MC4R agonist delivery, which leads to a reduction in food

intake and an increase in energy expenditure, whereas

MC4R antagonism drives the opposite effect (Williams

et al. 2000, Skibicka & Grill 2009b). MC4Rs in the NTS

seem to mediate not only the satiation effects of CCK

(Fan et al. 2004), but also the anorexigenic effects of

hypothalamic and brainstem leptin signaling (Skibicka &

Grill 2009a, Zheng et al. 2010).

The NTS also receives descending projections from

orexin andMCHneurons located in the LHA (Ciriello et al.

2003), and the delivery of orexin A into the hindbrain

increases food intake (Parise et al. 2011). The orexigenic

nature of the LHA and the anatomical connection with

the NTS indicated that this system may serve as a

mechanism to limit the satiety signals from the GI tract.

Another hypothalamic nucleus sending projections

into the NTS is the PVN (Sawchenko & Swanson 1982,

Luiten et al. 1985). The PVN–brainstem pathway plays a

significant role in the regulation of energy balance, as

contralateral disruption of PVN output and NTS input

causes hyperphagic obesity (Kirchgessner & Sclafani

1988). Different areas of the brainstem show TRH-positive

fibers, and evidence indicates that TRH is involved in the

brainstem regulation of energy homeostasis by integrating

endocrine and vagal–sympathetic responses (Ao et al.

2006, Zhao et al. 2013).
Hormonal signals involved in energy
homeostasis control

Peripheral adiposity signals: leptin and insulin

The discovery of leptin, the product of the Ob gene, in

1994 (Zhang et al. 1994) opened a new dimension in the

field of the central regulation of energy balance. Leptin is

an anorexigenic adipose tissue-derived hormone that

circulates in proportion to fat mass (Considine et al.

1996). It reaches the CNS through a saturable transport

system and conveys information about the energy status

of the organism. There are multiple leptin receptor (LEPR)

isoforms, with the long form (LEPRb) being essential for
Published by Bioscientifica Ltd
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the effects of leptin. The lack of leptin or LEPRb in both

rodents and humans causes a phenotype characterized by

hyperphagia, reduced energy expenditure, and severe

obesity (Halaas et al. 1995, Chen et al. 1996, Montague

et al. 1997, Clement et al. 1998). Most obese patients

exhibit a state of leptin resistance, which is the inability of

high circulating leptin levels to exert central anorexigenic

actions, which precludes the use of leptin as a thera-

peutical approach.

LEPRb is highly expressed in different hypothalamic

nuclei and other CNS regions involved in the control of

energy balance (Elmquist et al. 1998). In the ARC, the

POMC, and AgRP neurons are the direct targets of leptin

(Cheung et al. 1997, Elias et al. 1999, Cowley et al. 2001).

The ablation of LEPRb in POMC neurons, AgRP neurons,

or both populations of neurons causes increased body

weight, emphasizing the importance of leptin signaling

(Table 1). However, the magnitude of these changes is

smaller than that observed in mice globally lacking Lepr,

indicating the existence of additional subsets of neurons

mediating the effects of leptin on food intake and body

weight. Leptin binds to LEPRb and activates JAK2, which,

in turn, phosphorylates several tyrosine residues on the

intracellular domain of the LEPRb. This results in the

activation, dimerization, and nuclear translocation of

STAT3 (Robertson et al. 2008). In the nucleus, STAT3

enhances Pomc gene expression and inhibits Agrp gene

expression (Munzberg et al. 2003, Kitamura et al. 2006).

Accordingly, Stat3 deficiency in POMC neurons results in

overweight and Pomc gene transcriptional defects in

females (Table 1). This signaling cascade is negatively

regulated by the suppressor of cytokine signaling

3 (SOCS3), the expression of which is also regulated by

STAT3 and protein tyrosine phosphatase 1B (PTP1B)

(Robertson et al. 2008). Consistent with this, deletion of

either Socs3 or Ptp1b (Ptpn1) in POMC neurons leads to

reduced adiposity, improved leptin sensitivity, and

increased energy expenditure under HFD conditions

(Table 1). In addition, leptin also activates the phospha-

tidylinositol-3-kinase (PI3K) pathway. A variety of genetic

mouse models targeting the catalytic or regulatory

subunits of PI3K in specific subsets of neurons have been

reported with divergent results (Table 1). Overall, these

studies indicate that PI3K is required for leptin-mediated

regulation of energy balance and that, contrary to the

prevailing view, the catalytic p110b subunit in ARC

neurons may play a more prominent role than p110a.

PI3K generates phosphatidylinositol-3,4,5-triphosphate

(PIP3) and activates downstream targets such as

phosphoinositide-dependent kinase 1 (PDK1) and AKT
http://joe.endocrinology-journals.org
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(also known as protein kinase B), which consecutively

phosphorylates the transcription factor forkhead box

protein O1 (FOXO1). Upon phosphorylation, FOXO1 is

excluded from the nucleus, allowing STAT3 to bind to

Pomc and Agrp promoters, thereby stimulating and

inhibiting respectively the expression of these neuro-

peptides (Kitamura et al. 2006). These findings are

consistent with the effects of genetic manipulations

in vivo (Table 1). PI3K signaling is counterbalanced by

phosphatase and tensin homolog (PTEN), which speci-

fically dephosphorylates PIP3. The loss of Pten in POMC

neurons results in increased PIP3 signaling and diet-

sensitive obesity via KATP channel modulation, suggesting

a role for the PI3K pathway in the regulation of the activity

of this channel (Table 1). Overall, leptin stimulates Pomc

transcription, depolarizes POMC neurons, and also

increases a-MSH processing and secretion (Cowley et al.

2001, Munzberg et al. 2003, Guo et al. 2004) while

attenuating the expression and release of orexigenic NPY

and AGRP neuropeptides (Stephens et al. 1995, Mizuno &

Mobbs 1999).

Insulin, produced by pancreatic b-cells, has tradition-

ally been associated with glucose metabolism, but

compelling evidence indicates that insulin also acts as an

anorectic signal within the CNS. Glucose-induced insulin

is secreted into the bloodstream in proportion to fat stores

(Bagdade et al. 1967) and enters the brain through a

saturable transport mechanism (Baura et al. 1993). The

i.c.v. or intrahypothalamic administration of insulin to

primates and rodents reduces food intake (Woods et al.

1979, McGowan et al. 1993, Air et al. 2002). Insulin

receptor (IR (INSR)), as well as its downstream signaling

machinery, is expressed in hypothalamic areas involved in

the control of appetite (Havrankova et al. 1978, Corp et al.

1986) and colocalizes with AgRP and POMC neurons

(Benoit et al. 2002). Surprisingly, the loss of Insr in either

POMC or AgRP neurons does not lead to alterations in

energy balance (Table 1), although hepatic glucose

production defects have been observed in mice lacking Ir

in AgRP neurons (Konner et al. 2007). Neuron-specific IR

reconstitution in L1 mice (which haveO90% reduction of

IR levels in the ARC) confirmed that insulin signaling in

AgRP and POMC neurons controls glucose metabolism

and energy expenditure respectively (Table 1). Insulin

binding to IR leads to the autophosphorylation of the

receptor and the consequent recruitment of IRS proteins,

which converge with the leptin pathway at the PI3K level

(Xu et al. 2005b). Negative regulators of the LEPR, such as

SOCS3 and PTP1B, also directly inhibit the IR and its

signaling cascade acting on IRS1. The activation of the
Published by Bioscientifica Ltd

http://joe.endocrinology-journals.org
http://dx.doi.org/10.1530/JOE-13-0398


Ta
b
le

1
Su

m
m

a
ry

o
f

re
le

va
n

t
g

e
n

e
ti

c
m

o
u

se
m

o
d

e
ls

u
se

d
in

th
e

a
n

a
ly

si
s

o
f

le
p

ti
n

a
n

d
in

su
li

n
si

g
n

a
li

n
g

p
a
th

w
a
ys

in
P
O

M
C

a
n

d
A

g
R

P
n

e
u

ro
n

s

G
e
n
e
ti
c
m

a
n
ip
u
la
ti
o
n

N
e
u
ro

n
a
l
ce

ll
ty

p
e

B
W

A
d
ip
o
si
ty

F
o
o
d
in
ta

k
e

E
n
e
rg

y

e
x
p
e
n
d
it
u
re

D
ie
t

O
th

e
r
fe

a
tu

re
s

R
e
fe

re
n
ce

s

Le
p
r

d
e
le

ti
o

n
P
O

M
C

C
C

Z
Z

C
h

o
w

A
lt

e
re

d
n

e
u

ro
p

e
p

ti
d

e
e
xp

re
ss

io
n

B
a
lt

h
a
sa

r
e
t
a
l.

(2
0
0
4
)

Le
p
r

d
e
le

ti
o

n
A

g
R

P
C

C
Z

Z
C

h
o

w
R

e
d

u
ce

d
lo

co
m

o
to

r
a
ct

iv
it

y
va

n
d

e
W

a
ll
e
t
a
l.

(2
0
0
8
)

Le
p
r

d
e
le

ti
o

n
P
O

M
C

a
n

d
A

g
R

P
C

C
Tr

a
n

si
e
n

t
C

K
C

h
o

w
In

cr
e
a
se

d
re

sp
ir

a
to

ry
e
xc

h
a
n

g
e

ra
ti

o
va

n
d

e
W

a
ll
e
t
a
l.

(2
0
0
8
)

Ir
d

e
le

ti
o

n
P
O

M
C

Z
Z

Z
N

D
C

h
o

w
a
n

d
H

FD
–

K
o

n
n

e
r
e
t
a
l.

(2
0
0
7
)

Ir
d

e
le

ti
o

n
A

g
R

P
Z

Z
Z

N
D

C
h

o
w

a
n

d
H

FD
E
n

h
a
n

ce
d

h
e
p

a
ti

c
g

lu
co

se
p

ro
d

u
ct

io
n

K
o

n
n

e
r
e
t
a
l.

(2
0
0
7
)

Ir
re

-e
xp

re
ss

io
n

in
L1

m
ic

e
P
O

M
C

K
Z

C
C

C
h

o
w

In
su

li
n

re
si

st
a
n

ce
Li

n
e
t
a
l.

(2
0
1
0
)

Ir
re

-e
xp

re
ss

io
n

in
L1

m
ic

e
A

g
R

P
K

Z
Z

C
C

h
o

w
R

e
sc

u
e
d

h
e
p

a
ti

c
g

lu
co

se
p

ro
d

u
ct

io
n

Li
n
e
t
a
l.

(2
0
1
0
)

Le
p
r

a
n

d
Ir

d
e
le

ti
o

n
P
O

M
C

C
Z

Z
K

C
h

o
w

In
su

li
n

re
si

st
a
n

ce
a
n

d
re

d
u

ce
d

fe
rt

il
it

y
in

fe
m

a
le

s

H
il

l
e
t
a
l.

(2
0
1
0
)

Ir
s2

d
e
le

ti
o

n
P
O

M
C

Z
Z

Z
Z

C
h

o
w

N
o

rm
a
l

in
su

li
n

a
n

d
le

p
ti

n
le

ve
ls

C
h

o
u

d
h

u
ry

e
t
a
l.

(2
0
0
5
)

P
tp
1
b

d
e
le

ti
o

n
P
O

M
C

K
K

Z
C

H
FD

Im
p

ro
ve

d
le

p
ti

n
se

n
si

ti
vi

ty
B

a
n

n
o
e
t
a
l.

(2
0
1
0
)

St
a
t3

d
e
le

ti
o

n
P
O

M
C

C
C

C
N

D
C

h
o

w
N

o
rm

a
l

p
h

e
n

o
ty

p
e

in
m

a
le

m
ic

e
X

u
e
t
a
l.

(2
0
0
7
)

St
a
t3

d
e
le

ti
o

n
A

g
R

P
C

C
C

N
D

C
h

o
w

H
yp

o
re

sp
o

n
si

ve
to

le
p

ti
n

G
o

n
g
e
t
a
l.

(2
0
0
8
)

St
a
t3

co
n

st
it

u
ti

ve
a
ct

iv
e

fo
rm

P
O

M
C

C
C

C
N

D
C

h
o

w
N

o
a
d

d
it

io
n

a
l

e
ff

e
ct

o
n

H
FD

a
d

m
in

is
tr

a
ti

o
n

E
rn

st
e
t
a
l.

(2
0
0
9
)

St
a
t3

co
n

st
it

u
ti

ve
a
ct

iv
e

fo
rm

A
g

R
P

K
K

Z
C

C
h

o
w

a
n

d
H

FD
In

cr
e
a
se

d
lo

co
m

o
to

r
a
ct

iv
it

y
M

e
sa

ro
s
e
t
a
l.

(2
0
0
8
)

P
d
k
1

d
e
le

ti
o

n
P
O

M
C

C
C

C
Z

C
h

o
w

D
e
cr

e
a
se

d
P
o
m
c

g
e
n

e
e
xp

re
ss

io
n

Is
k
a
n

d
a
r
e
t
a
l.

(2
0
1
0
)

P
d
k
1

d
e
le

ti
o

n
A

g
R

P
K

K
K

Z
C

h
o

w
R

e
sc

u
e
d

b
y

d
o

m
in

a
n

t
n

e
g

a
ti

ve
Fo

xo
1

C
a
o
e
t
a
l.

(2
0
1
1
)

P
d
k
1

d
e
le

ti
o

n
P
O

M
C

Tr
a
n

si
e
n

t
C

Tr
a
n

si
e
n

t
C

Tr
a
n

si
e
n

t
C

N
D

C
h

o
w

a
n

d
H

FD
R

e
sc

u
e
d

b
y

d
o

m
in

a
n

t
n

e
g

a
ti

ve
Fo

xo
1

B
e
lg

a
rd

t
e
t
a
l.

(2
0
0
8
)

Fo
xo

1
d

e
le

ti
o

n
P
O

M
C

K
K

K
Z

C
h

o
w

In
cr

e
a
se

d
C
p
e

e
xp

re
ss

io
n

a
n

d
a

-M
SH

le
ve

ls
P
lu

m
e
t
a
l.

(2
0
0
9
)

Fo
xo

1
co

n
st

it
u

ti
ve

a
ct

iv
e

fo
rm

P
O

M
C

C
(F

e
m

a
le

s)
C

(F
e
m

a
le

s)
C

(F
e
m

a
le

s)
Z

C
h

o
w

D
e
cr

e
a
se

d
P
o
m
c

g
e
n

e
e
xp

re
ss

io
n

Is
k
a
n

d
a
r
e
t
a
l.

(2
0
1
0
)

Fo
xo

1
d

e
le

ti
o

n
A

g
R

P
Z

K
K

Z
C

h
o

w
R

e
si

st
a
n

t
to

H
FD

R
e
n
e
t
a
l.

(2
0
1
2
)

So
cs
3

d
e
le

ti
o

n
P
O

M
C

K
N

D
Z

C
H

FD
N

o
b

o
d

y
w

e
ig

h
t

p
h

e
n

o
-

ty
p

e
o

n
ch

o
w

d
ie

t
K

ie
vi

t
e
t
a
l.

(2
0
0
6
)

So
cs
3

o
ve

re
xp

re
ss

io
n

P
O

M
C

C
C

Z
K

C
h

o
w

Le
p

ti
n

re
si

st
a
n

ce
R

e
e
d
e
t
a
l.

(2
0
1
0
)

So
cs
3

o
ve

re
xp

re
ss

io
n

A
g

R
P

Z
Z

C
C

C
h

o
w

A
lt

e
re

d
g

lu
co

se
m

e
ta

b
-

o
li

sm
O

lo
fs

so
n
e
t
a
l.

(2
0
1
3
)

P
te
n

d
e
le

ti
o

n
P
O

M
C

C
C

C
Z

C
h

o
w

G
e
n

d
e
r

d
im

o
rp

h
is

m
o

n
H

FD
a
d

m
in

is
tr

a
ti

o
n

P
lu

m
e
t
a
l.

(2
0
0
9
)

Jo
u
rn
a
l
o
f
E
n
d
o
cr
in
o
lo
g
y

Thematic Review M SCHNEEBERGER and others Neuronal circuits and energy
balance

220 :2 T30

http://joe.endocrinology-journals.org
DOI: 10.1530/JOE-13-0398

� 2014 Society for Endocrinology
Printed in Great Britain

Published by Bioscientifica Ltd

http://joe.endocrinology-journals.org
http://dx.doi.org/10.1530/JOE-13-0398


Ta
b
le

1
C
o
n
ti
n
u
e
d

G
e
n
e
ti
c
m

a
n
ip
u
la
ti
o
n

N
e
u
ro

n
a
l
ce

ll
ty

p
e

B
W

A
d
ip
o
si
ty

F
o
o
d
in
ta

k
e

E
n
e
rg

y

e
x
p
e
n
d
it
u
re

D
ie
t

O
th

e
r
fe

a
tu

re
s

R
e
fe

re
n
ce

s

p
8
5

(P
ik
3
r1

)
d

e
le

ti
o

n
P
O

M
C

Z
N

D
N

D
N

D
C

h
o

w
G

e
n

d
e
r

d
im

o
rp

h
is

m
o

n
H

FD
a
d

m
in

is
tr

a
ti

o
n

H
il

l
e
t
a
l.

(2
0
0
9
)

p
1
1
0
a

(P
ik
3
ca

)
d

e
le

ti
o

n
P
O

M
C

C
C

Z
K

(F
e
m

a
le

s)
C

h
o

w
Se

n
si

ti
ve

to
H

FD
H

il
l
e
t
a
l.

(2
0
0
9
)

P
1
1
0
a

d
e
le

ti
o

n
P
O

M
C

Z
Z

Z
Z

C
h

o
w

Se
n

si
ti

ve
to

H
FD

A
l-

Q
a
ss

a
b
e
t
a
l.

(2
0
0
9
)

p
1
1
0
a

d
e
le

ti
o

n
A

g
R

P
Z

Z
Z

Z
C

h
o

w
a
n

d
H

FD
B

lu
n

te
d

in
su

li
n

-i
n

d
u

ce
d

d
e
p

o
la

ri
za

ti
o

n
A

l-
Q

a
ss

a
b
e
t
a
l.

(2
0
0
9
)

p
1
1
0
b

(P
ik
3
cb

)
d

e
le

ti
o

n
P
O

M
C

Z
C

C
Z

C
h

o
w

Se
n

si
ti

ve
to

H
FD

A
l-

Q
a
ss

a
b
e
t
a
l.

(2
0
0
9
)

p
1
1
0
b

d
e
le

ti
o

n
A

g
R

P
K

K
K

Z
C

h
o

w
a
n

d
H

FD
B

lu
n

te
d

in
su

li
n

-i
n

d
u

ce
d

d
e
p

o
la

ri
za

ti
o

n
A

l-
Q

a
ss

a
b
e
t
a
l.

(2
0
0
9
)

A
m
p
k
a
2

(P
rk
a
a
1
)

d
e
le

ti
o

n
P
O

M
C

C
C

C
A

ft
e
r

fa
st

K
C

h
o

w
a
n

d
H

FD
N

e
u

ro
n

s
in

se
n

si
ti

ve
to

g
lu

co
se

ch
a
n

g
e
s

C
la

re
t
e
t
a
l.

(2
0
0
7
)

A
m
p
k
a
2

d
e
le

ti
o

n
A

g
R

P
K

Z
Z

Z
C

h
o

w
N

e
u

ro
n

s
in

se
n

si
ti

ve
to

g
lu

co
se

ch
a
n

g
e
s

C
la

re
t
e
t
a
l.

(2
0
0
7
)

N
D

,
n

o
t

d
e
te

rm
in

e
d

.

Jo
u
rn
a
l
o
f
E
n
d
o
cr
in
o
lo
g
y

Thematic Review M SCHNEEBERGER and others Neuronal circuits and energy
balance

220 :2 T31

http://joe.endocrinology-journals.org
DOI: 10.1530/JOE-13-0398

� 2014 Society for Endocrinology
Printed in Great Britain
IR signaling pathway results in reduced expression of NPY

and increased levels of POMC in the ARC, thus stimulating

an anorexigenic effect (Schwartz et al. 1992, Sipols et al.

1995, Benoit et al. 2002).

Leptin and insulin also regulate the activity of AMPK,

an evolutionarily conserved cellular and organismal

energy sensor that plays a central role in the hypothalamic

regulation of energy homeostasis (Minokoshi et al. 2004,

Claret et al. 2007). In particular, both hormones inhibit

AMPK and its downstream targets in the hypothalamus

(Minokoshi et al. 2004). A recent study has reported that

leptin-mediated inhibition of AMPK is achieved through

phosphorylation on serine491 by mTOR/p70S6K, an event

that is necessary for the action of leptin on food intake and

body weight (Dagon et al. 2012).

The molecular significance and detailed mechanisms

of the different components of the aforementioned

signaling pathways have become better understood,

thanks to the advent of the Cre/Lox technology. Table 1

summarizes the phenotypes of several conditional mouse

models that provided valuable information in this regard.
GI hormones

Ghrelin is a 28-amino acid acylated hormone, mainly

produced by the stomach, which exerts its biological

actions on energy balance through the growth hormone

secretagogue receptor (GHSR; Kojima et al. 1999, Sun et al.

2004). Circulating ghrelin levels are increased under

fasting conditions and reduced after refeeding (Tschop

et al. 2000). The central and peripheral administration of

ghrelin in rodents has been shown to robustly promote

feed intake, adiposity, and body weight gain (Tschop et al.

2000, Nakazato et al. 2001). Likewise, ghrelin also

enhances appetite in humans (Wren et al. 2001). GHSR is

expressed in AgRP neurons of the ARC (Willesen et al.

1999), and this population of neurons is essential for the

mediation of the orexigenic effects of ghrelin (Chen et al.

2004). Ghrelin is able to stimulate the transcription of Npy

and Agrp, and it also increases the number of stimulatory

synapses on AgRP neurons while increasing the number

of inhibitory synapses on POMC neurons (Kamegai et al.

2001, Nakazato et al. 2001, Cowley et al. 2003). However,

neuronal activation and positive energy balance have also

been reported after ghrelin administration in the PVN,

LHA, and hindbrain and in the mesolimbic reward

pathway (Faulconbridge et al. 2003, Naleid et al. 2005).

Peptide tyrosine tyrosine (PYY) is mainly released

from the L-cells of the intestinal epithelium in res-

ponse to nutrient ingestion (Tatemoto & Mutt 1980,
Published by Bioscientifica Ltd
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Adrian et al. 1985). Circulating PYY levels are proportional

to calorie intake and are reduced under fasting conditions

(Adrian et al. 1985). Two endogenous forms, PYY1–36 and

PYY3–36, are synthesized and secreted. The latter form is

the most abundant in the bloodstream and exerts a direct

action in the ARC. This has been demonstrated by

peripheral and intra-ARC administration of PYY3–36,

which increases neuronal activity in this region and

reduces appetite and body weight in a dose-dependent

manner (Batterham et al. 2002, Challis et al. 2003). These

anorexigenic effects are mediated via the inhibition of

ARC Y2 receptors, as demonstrated by pharmacological

(Abbott et al. 2005, Scott et al. 2005) and genetic

(Batterham et al. 2002) studies, which eventually leads to

increased a-MSH and reduced NPY release (Batterham et al.

2002). The effects of PYY3–36 in the brainstem and the

vagal–brainstem circuit have also been confirmed, as the

peripheral delivery of this peptide has been shown to

increase neuronal activity in NTS and AP neurons and

stimulate vagal afferent firing (Koda et al. 2005, Blevins

et al. 2008). Consistent with a role for PYY in the

regulation of appetite and body weight, transgenic mice

globally lacking or overexpressing Pyy exhibit opposite

alterations in energy balance control (Batterham et al.

2006, Boey et al. 2008).

GLP1, the cleavage product of proglucagon in the

intestine and brain, is mainly secreted from intestinal

L-cells. Similar to PYY, circulating GLP1 levels are high

following a meal and are low under fasting conditions.

This hormone exerts a strong incretin effect, via the GLP1

receptor (GLP1R) expressed in pancreatic islets, enhancing

insulin secretion after carbohydrate ingestion (Kreymann

et al. 1987). GLP1R is also expressed in key CNS areas

involved in the control of energy balance, such as the

hypothalamus and brainstem (Merchenthaler et al. 1999).

A number of studies have shown that the central or site-

specific administration of GLP1 or GLP1 analogs inhibits

food intake in rodents (Tang-Christensen et al. 1996,

Turton et al. 1996,McMahon&Wellman 1998, Hayes et al.

2008). Interestingly, neurons expressing the proglucagon

gene are present in the NTS, suggesting the existence of a

local circuit involved in the control of appetite (Merch-

enthaler et al. 1999). In fact, recent studies have provided

evidence for a dual (peripheral and central) role of GLP1 in

the suppression of appetite mediated by local vagal

afferents and a gut–brain feedback mechanism (Barrera

et al. 2011).

CCK is postprandially secreted from I-cells from

the small intestine and its systemic delivery suppresses

food intake in both animal models and humans
http://joe.endocrinology-journals.org
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(Gibbs et al. 1973, Gibbs & Smith 1977, Kissileff et al.

1981). CCK1 and CCK2 receptors are expressed in the

brainstem and hypothalamus, but the anorectic effects of

CCK are critically mediated by vagal sensory neurons that

project into the NTS (Moran et al. 1997). Interestingly, NTS

POMC neurons are activated by CCK and brainstemMC4R

signaling is required for CCK-induced suppression of

appetite (Fan et al. 2004). It has also been reported that

ghrelin attenuates and leptin synergistically potentiates

the effects of CCK on appetite (Barrachina et al. 1997,

Lee et al. 2011).
Neural circuits regulating homeostatic energy
balance

Certain physiological conditions, such as the prandial

state, are associated with notable changes in the

circulating concentration of metabolites and hormones

involved in the regulation of whole-body energy homeo-

stasis. For example, in a postabsorptive situation, circulat-

ing cues of energetic surfeit (leptin, insulin, GLP1, PYY,

and glucose) are elevated, while cues of energetic deficit

(ghrelin) are reduced. The opposite is true under fasting

conditions. These hormones act in concert to engage

specific neuronal circuits in different brain regions,

including the hypothalamus and brainstem, establishing

reciprocal and dynamic interactions to restore systemic

energy balance. In this section, we summarize the main

circuits and the neuronal responses engaged by leptin and

ghrelin, as prototypical examples of anorexigenic and

orexigenic signals respectively.
ARC neuronal circuits: POMC, AgRP, and RIPCre neurons

Melanocortin peptides and NPY are two basic components

of a critical hypothalamic circuit involved in the conver-

gence and integration of nutritional and hormonal cues

aimed at regulating organismal energy balance. In the

ARC, the POMC, and AgRP neurons are located in

proximity to each other and project in parallel into similar

brain areas expressing MCRs. Both POMC and AgRP

neurons are able to sense a number of peripheral (leptin,

insulin, and ghrelin) and central (NPY, GABA, serotonin,

and melanocortin) signals, which are able to acutely

modulate their electrical activity influencing the release

of neuropeptides and neurotransmitters to ultimately

regulate appetite, energy expenditure, and metabolism.

In general terms, POMC (anorexigenic) and AgRP

(orexigenic) neurons have opposite physiological func-

tions, which are largely the consequence of the
Published by Bioscientifica Ltd
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contrasting actions of a-MSH and AGRP peptides on

MCRs: while a-MSH is an endogenous MCR agonist,

AGRP is an inverse agonist (Haskell-Luevano & Monck

2001, Nijenhuis et al. 2001, Tolle & Low 2008). Indeed,

substantial experimental evidence indicates that the

agonism of MCRs attenuates appetite and enhances

energy expenditure, whereas their antagonism has essen-

tially the opposite effects (Fan et al. 1997, Harrold et al.

1999, Hwa et al. 2001). This is consistent with data

showing that the loss of or mutations in MC3R and

MC4R genes cause obesity both in rodents and in humans

(Huszar et al. 1997, Butler et al. 2000, Farooqi 2008). In

addition to the inhibition of MCR signaling, the orexi-

genic actions of AgRP neurons are also mediated by the

release of NPY and GABA.

The anorexigenic effects of leptin are basically

achieved by repressing AgRP neurons and activating

POMC neurons (Fig. 1A). Leptin enhances Pomc gene

expression and processing into a-MSH (Schwartz et al.

1997, Thornton et al. 1997, Mizuno et al. 1998).

Electrophysiological studies have demonstrated that

locally applied leptin is able to depolarize (excite) POMC

neurons (Cowley et al. 2001, Claret et al. 2007, 2011, Hill

et al. 2008, Al-Qassab et al. 2009, Qiu et al. 2010) probably

through TRPC channels (Qiu et al. 2010). In contrast,

leptin inhibits the transcription of Npy and Agrp genes in

the hypothalamus (Stephens et al. 1995, Schwartz et al.

1996, Mizuno & Mobbs 1999). Electrophysiological

recordings have shown that leptin decreases the GABA-

ergic-mediated tone induced by AgRP neurons onto

neighboring POMCneurons, resulting in the disinhibition

of POMC neuron activity (Cowley et al. 2001). The ability

of leptin to directly hyperpolarize (inhibit) AgRP neurons

is controversial (Cowley et al. 2001, Claret et al. 2007,

Al-Qassab et al. 2009), but studies in rats have reported

leptin-mediated inhibition of identified NPY neurons

(van den Top et al. 2004). In addition, leptin also acts

directly on presynaptic GABAergic neurons that do not

express AGRP, reducing the inhibitory input to post-

synaptic POMC neurons, thus further contributing to the

maintenance of the anorexigenic actions mediated by this

hormone (Fig. 1A; Vong et al. 2011).

On the other hand, under conditions of negative

energy balance, circulating ghrelin levels are increased.

The actions of ghrelin on food intake and energy balance

are mediated by AgRP neurons, as mice lacking Agrp and

Npy are insensitive to the orexigenic effects of external

ghrelin (Chen et al. 2004, Luquet et al. 2007). In line with

this, ghrelin increases the expression of Npy and Agrp

transcripts (Kamegai et al. 2001, Nakazato et al. 2001)
http://joe.endocrinology-journals.org
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and depolarizes AgRP neurons while increasing the

number of GABAergic inhibitory synapses on POMC

neurons (Fig. 1B) (Cowley et al. 2003, van den Pol et al.

2009, Yang et al. 2011, Atasoy et al. 2012). The importance

of these GABAergic stimuli in the control of energy

balance has been substantially demonstrated (Horvath

et al. 1997,Wu et al. 2009, 2012,Wu& Palmiter 2011), and

conditional deletion of the vesicular GABA transporter in

AgRP neurons blunts the inhibitory tone onto

postsynaptic POMC neurons, leading to an enhanced

melanocortigenic output and a lean phenotype (Tong

et al. 2008). Moreover, AGRP and NPY directly hyper-

polarize POMC neurons and decrease the production and

release of a-MSH, further inhibiting the activity of this

population of neurons (Roseberry et al. 2004, Smith et al.

2007, Cyr et al. 2013). Thus, AgRP neurons are able to

negatively modulate the anorexigenic effects of POMC

neurons by direct (GABAergic synapsis) and indirect (MCR

antagonism) mechanisms (Fig. 1B).

In addition to changes in neuropeptide release, leptin

and ghrelin also exert rapid and reversible effects on

synaptic connections onto POMC and AgRP neurons.

Seminal studies carried out at the Horvath laboratory have

provided the first evidence for synaptic plasticity in

hypothalamic energy balance circuits and established the

basis for a new mechanism by which these hormones

dynamically regulate circuit responsiveness to control

energy homeostasis (Pinto et al. 2004). The role of synaptic

remodeling in neuronal circuits regulating metabolism

has recently been reviewed in detail (Zeltser et al. 2012,

Dietrich & Horvath 2013).

A novel subpopulation of ARC neurons involved in

the control of energy balance (defined by virtue of

Cre-mediated expression of rat insulin II promoter-Cre

transgene and called RIPCre neurons) has recently been

described. Comparative electrophysiological and histo-

logical studies indicate that RIPCre neurons constitute a

distinct population from POMC or AgRP neurons

(Choudhury et al. 2005). However, close apposition of

these neuronal subsets suggests that RIPCre neurons may

be the targets of POMC and/or AgRP neurons. Indeed, bath

application of a melanocortin agonist has been found to

cause direct long-lasting depolarization and increased

firing in ARC RIPCre neurons (Choudhury et al. 2005).

Interestingly, insulin has also been found to depolarize

these neurons, while leptin has been found to not cause

any electrophysiological effect (Choudhury et al. 2005).

Although a number of mouse genetic studies indicate

that ARC RIPCre neurons regulate systemic energy balance

(Cui et al. 2004, Choudhury et al. 2005), this interpretation
Published by Bioscientifica Ltd
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Figure 1

Schematic representation of the main neuronal circuits engaged by leptin

and ghrelin. (A) Leptin is released in proportion to fat stores and stimulates

the activity of anorexigenic POMC neurons in the ARC while inhibiting

neighboring AgRP neurons. This results in increased release of a-MSH and

the activation of downstream second-order neurons expressing MC4R in

hypothalamic and extrahypothalamic regions. POMC neurons also express

MC4R, indicating the existence of an autoregulatory mechanism induced

by a-MSH. Leptin also acts on GABAergic presynaptic neurons attenuating

its inhibitory effect on POMC neurons. Overall, these effects result

in reduced food intake and increased energy expenditure. (B) Ghrelin

exerts its orexigenic effects through AgRP neurons. Ghrelin increases

inhibitory GABAergic projections onto POMC neurons and enhances the

expression and release of NPY and AGRP. In the PVN, AGRP acts as a

MC4R inverse agonist, while NPY binds to Y1 and Y5 receptors. Collectively,

these events lead to increased orexigenic output. Red arrows and

synapses, inhibitory effect and green arrows, activation effect. WAT,

white adipose tissue.
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is called into question by the fact that the RIPcre transgene

is also expressed in other regions of the brain and

pancreatic b-cells. However, recent data show that the

acute and selective ablation of ARC RIPCre neurons leads

to hypophagia, reduced food intake, and adiposity

through compensatory increase in the number of

anorexigenic neurons in the PVN (Rother et al. 2012).

Consistent with the anorexigenic nature of RIPCre

neurons, a combination of genetic and pharmacogenetic

approaches has shown that the synaptic release of GABA,

but not of glutamate, from this subset of neurons increases

the thermogenic function of BAT without affecting food

intake (Kong et al. 2012). The effects of leptin on RIPCre
http://joe.endocrinology-journals.org
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neurons are complex, as suggested by heterogeneous

electrophysiological recordings demonstrating subsets of

neurons being depolarized, hyperpolarized, or silent

(Choudhury et al. 2005, Kong et al. 2012). Nevertheless,

the ability of leptin to increase energy expenditure is

impaired in mice lacking vesicular GABA transporter in

RIPCre neurons, indicating a functional effect of this

hormone on these neurons (Kong et al. 2012).

Taken together, current evidence indicates that a local

ARC circuit constituted by the ‘first-order’ POMC, AgRP,

and RIPCre neurons plays a key role in the integration

of humoral signals reporting on energy conditions.

This is achieved by a sophisticated and multilevel
Published by Bioscientifica Ltd
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organizational structure that allows the accurate

regulation of orexigenic and anorexigenic outputs

through direct and indirect mechanisms.
Downstream neurocircuitry engaged by hypothalamic

neuron activity

Given that POMC and AgRP neurons are the sole source of

MCRligands in thebrain,afinebalancebetweena-MSHand

AGRP is necessary to precisely regulate their mediated

physiological outputs on MC4Rs in target areas. These

receptors are localized in many nuclei involved in the

regulation of energy balance where POMC and AgRP

neurons send axon projections. MC4Rs are G-protein-

coupled receptors that stimulate adenylyl cyclase, thereby

increasing intracellular cAMP levels (Florijn et al. 1993).

A series of elegant studies using a cell-specific MC4R

re-expression strategy indicate that MC4Rs in the PVN are

mainly involved in the control of food intake (Balthasar

et al. 2005), while MC4Rs in autonomic preganglionic

neurons regulate energy expenditure and hepatic glucose

production (Rossi et al. 2011) (Fig. 1A). Furthermore, and

contrary to the prevailing view, a recent report has shown

that POMC neurons also express MC4Rs that contribute to

the regulation of body weight and composition through

changes in both feeding behavior and energy expenditure

(do Carmo et al. 2013). This autoregulatory mechanism,

induced by a-MSH released from the same cell and/or

neighboring POMCneurons, could represent an additional

layer of regulation within a widely segregated network of

melanocortin receptors involved in the regulation of

homeostatic (appetite) and autonomic (thermogenesis,

hepaticmetabolism,and insulin release) functions (Fig. 1A).

NPY receptors are Gi/o-protein-coupled receptors that

reduce cAMP production, leading to the activation of

G-protein-gated inwardly rectifying KC (GIRK) channels

and inhibition of voltage-dependent Ca2C channels (Sohn

et al. 2013). The precise roles of NPY receptors and their

contribution to the mediation of the orexigenic effects of

NPY have been difficult to delineate due to the paradoxical

phenotypes of receptor KOmousemodels. This is probably

the consequence of receptor redundancies and compensa-

tory mechanisms exhibited after the application of germ-

line deletion strategies. Despite these limitations,

pharmacological and genetic studies indicate that the

orexigenic actions of NPY are mediated by postsynaptic Y1

and Y5 within the PVN (Nguyen et al. 2012, Sohn et al.

2013; Fig. 1B). Notably NPY from ARC neurons acts

through PVN Y1, resulting in a functional inhibition of

TH tonus and BAT thermogenesis (Shi et al. 2013).
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Furthermore, NPY may also decrease pro-TRH transcrip-

tion and proconvertase 2-mediated pro-TRH processing in

the PVN through Y1/Y5 receptors (Cyr et al. 2013). Taken

together, abundant amounts of evidence suggest that the

effects of ARC NPY on energy balance are principally

mediated by the PVN. However, it is important to note

that other sources of NPY may also play a role in the

regulation of energy balance.
Correlating neuronal circuit activity with behavioral

responses by pharmacogenetic and optogenetic

techniques

Most of the experimental findings that have allowed

researchers to outline the models suggested so far are

largely the result of circumstantial evidence. However, the

recent development of pharmacogenetic and optogenetic

techniques has provided a way to exert temporally and

spatially precise control over the activity of defined circuit

elements. This permits the establishment of causal

connections between circuit activity and behavioral

responses (Sternson 2013).

Using an elegant combination of optogenetics and

mouse genetic approaches, Aponte et al. (2011) have

confirmed that the selective activation of AgRP neurons is

sufficient to evoke voracious feeding behavior in mice,

withoutprevious trainingand independentofmelanocortin

signaling.The levelofneuronal activationhasbeen found to

correlatewith themagnitude,dynamics, anddurationof the

induced behavioral response. Furthermore, continuous

photostimulation is required to maintain evoked feeding

behaviour, indicating that the activation of AgRP neurons

doesnot initiate a sustainedpropagating effect (Aponte et al.

2011). In contrast, prolonged (but not brief) optogenetic

stimulation of POMC neurons has been shown to result in

reduced food intake and body weight gain, which requires

downstreamMC4R activity (Aponte et al. 2011).

The behavioral effects on food intake caused by AgRP

or POMC neuron activation have been further supported

by studies using pharmacogenetic (designer receptors

exclusively activated by designer drugs (DREADDs))

technology. Pharmacogenetic activation of AgRP neurons

rapidly induces feeding and food-seeking behaviors

associated with decreased energy expenditure and

enhanced adiposity (Krashes et al. 2011). Consistent with

the optogenetic data (Aponte et al. 2011), long-term

stimulation of ARC POMC neurons is necessary to reduce

appetite. Interestingly, the acute stimulation of NTS

POMC neurons has been shown to generate an immediate

suppression of food intake (Zhan et al. 2013).
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In a subsequent study, the Sternson group performed

a series of experiments to determine which brain regions

and cell types mediate evoked feeding behavior triggered

by activated AgRP neurons. The authors used optogenetic

approaches to map synaptic connections downstream of

AgRP neurons and assessed their role in terms of ingestive

behavior by perturbing electrical activity in presynaptic

and postsynaptic neuronal types (Atasoy et al. 2012).

Notably the authors found that ARC AgRP neurons induce

evoked feeding behavior through inhibitory input onto

oxytocin neurons in the PVN, while ARC POMC neurons

are involved in the long-term control of appetite and

energy balance (Atasoy et al. 2012).

Collectively, these results emphasize the previously

unrecognized importance of the temporal and spatial

activation of POMC and AgRP neurons. Thus, ARC AgRP

and NTS POMC neurons could be involved in the

regulation of acute feeding behavior while ARC POMC

neurons may be involved in long-term responses. This

demonstrates the existence of multiple, distinct behavioral

and anatomical modules that act in synchrony to regulate

whole-body energy balance. The use of these tools in the

field of central control of energy balance has providednovel

valuable information and has confirmed previous findings.

However, it has also generated some controversial obser-

vations. Further research needs to be conducted to precisely

define the importance of these factors and to reconcile

these observations with previous evidence (Mercer et al.

2013). Nevertheless, these reports demonstrate that opto-

genetics and pharmacogenetics are exceptionally useful

tools to study the interrelationships between synaptology,

neuronal circuit activity, and behavioral outputs.
New players in energy balance control

Non-neuronal cell types: macroglia and microglia

Glial cells have traditionally been considered satellite

neuronal partners with supportive and structural roles.

However, in recent years, glial cells have acquired a new

rank and are now regarded as active players in many

physiological functions including energy balance control.

Astrocytes are star-shaped cells that are involved in a

number of functions, such as metabolic support to

neurons and transmitter uptake and release as well as

synaptic remodeling (Sofroniew & Vinters 2010).

Astrocytes express LEPR (Cheunsuang & Morris 2005,

Hsuchou et al. 2009b), and modifications in circulating

leptin levels alter hypothalamic astrocyte expression of

structural proteins as well as glutamate and glucose
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DOI: 10.1530/JOE-13-0398

� 2014 Society for Endocrinology
Printed in Great Britain
transporters (Garcia-Caceres et al. 2011, Fuente-Martin

et al. 2012). This may cause changes in the synaptic

plasticity and excitability of surrounding neurons, leading

to metabolic adaptations. In fact, HFD administration in

rodents is associated with increased glial coverage of

POMC neuron perikarya (Horvath et al. 2010). It has also

been reported that DIO mice exhibit increased expression

of functional astrocytic LEPR in the hypothalamic region,

an effect that may play a role in the development of leptin

resistance (Hsuchou et al. 2009a). Indeed, loss of astrocytic

Lepr under HFD conditions provides partial protection

against developing disturbances in neuronal leptin signal-

ing (Jayaram et al. 2013).

Obesity and lipid overload induce chronic low-grade

inflammation in the hypothalamus (Thaler et al. 2010).

This is regarded as a protective effect, which is mainly

promoted by microglial cells that have immunitary

actions in the CNS. HFD feeding selectively and rapidly

activates microglia in the hypothalamus and increases the

production of proinflammatory cytokines (De Souza et al.

2005, Milanski et al. 2009, Thaler et al. 2012). Interest-

ingly, it has been demonstrated that moderate physical

activity reduces hypothalamic microglial activation

independently of body mass (Yi et al. 2012). Enhanced

hypothalamic microglial activation has also been reported

in rodents and primates after nutritional manipulations

during the prenatal or perinatal period (Grayson et al.

2010, Tapia-Gonzalez et al. 2011).

Tanycytes have recently emerged as novel modulators

of the hypothalamic networks that control energy balance.

They contact the cerebrospinal fluid and send processes

that come into proximity with neurons into the ARC and

VMN (Bolborea & Dale 2013). Although it is not known

whether tanycytes are able to modulate the activity of

hypothalamic neurons, several lines of evidence suggest

that this particular cell type may be involved in the

regulation of energy homeostasis. For example, tanycytes

respond to fluctuations in glucose concentration (Frayling

et al. 2011), express a number of genes related to energy

homeostasis control (Bolborea & Dale 2013), and regulate

the permeability properties of the fenestrated capillaries of

the ME, which may constitute a way of modulating the

access of metabolites into the ARC (Langlet et al. 2013).

Intriguingly, tanycytes may be a novel population of adult

neural stem cells in the hypothalamus. Tanycytes express

stem cell markers, including nestin and SOX2 (Lee et al.

2012), and lineage-tracing studies have shown that they

give rise to neurons in vivo with functional implications.

While short-term HFD feeding promotes hypothalamic

neurogenesis in pre-adult ages (Lee et al. 2012), chronic
Published by Bioscientifica Ltd
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HFD administration causes depletion of hypothalamic

neural stem cells (Li et al. 2012). Furthermore, the

manipulation of hypothalamic neurogenesis in adult

mice has also produced divergent results. Selective inhi-

bition of ME neurogenesis in adult mice fed a HFD resulted

in reduced weight gain and adiposity due to enhanced

energy expenditure (Lee et al. 2012). By contrast, genetic

IKKb/NF-kB activation in SOX2-positive hypothalamic cells

led to overeating and weight gain (Li et al. 2012). It is

important to note that these strategies did not exclusively

target tanycytes and so these metabolic effects cannot be

solely attributed to this cell type. Together, these results

indicate that neurogenesis after short- or long-term HFD

administration may have a compensatory or detrimental

effect respectively on cell fate. These differences can also be

the consequence of targeting distinct tanycyte populations

(Bolborea & Dale 2013).
Epigenetic mechanisms

The interplay between genetic and environmental factors

(nutrition, maternal health, chemicals, lifestyle, etc.)

during the prenatal or perinatal period and their influence

on the development of energy balance and metabolic

alterations into adulthood have recently received sub-

stantial interest. In both humans and animal models,

prenatal or perinatal nutritional manipulations lead to

chronic metabolic disturbances in terms of feeding

behavior, energy expenditure, leptin sensitivity, and

glucose homeostasis. These metabolic defects may be

partially the consequence of abnormal development of

appetite-regulating neuronal circuits due to perinatal

programming (Contreras et al. 2013). Epigenetic changes

have been proposed as likely candidates tomediate, at least

in part, these neuronal programming events, but a limited

number of studies have explored this hypothesis. The

epigenetic machinery that controls chromatin dynamics

includes DNA methylation, posttranslational histone

modifications, and non-coding RNAs. Neonatal overfeed-

ing in rats, which results in overweight and metabolic

syndrome, is associated with the hypermethylation of the

Pomc gene promoter (Plagemann et al. 2009). The extent of

this DNA methylation is negatively correlated with the

expression of POMC in relation to leptin and insulin levels,

indicating the functionality of acquired epigenomic

alterations (Plagemann et al. 2009). In the same over-

nutrition model, Plagemann et al. (2010) also found

increased methylation of the Insr promoter in the

hypothalamus. Similarly, epigenetic remodeling of hypo-

thalamic genes induced by mild maternal undernutrition
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(Stevens et al. 2010, Begum et al. 2012) or stress (Paternain

et al. 2012) has also been reported to be associated with

altered energy balance and metabolism in experimental

animal models. In humans, different methylation patterns

of POMC and NPY promoter regions in leukocytes have

been proposed as biomarkers to predict weight regain after

an energy restriction program (Crujeiras et al. 2013).

Collectively, this evidence supports the hypothesis that

early prenatal or postnatal environmental perturbations

cause chronic metabolic alterations that are partially the

consequence of epigenetic changes in key genes and areas

of the CNS involved in the control of energy balance.

Nevertheless, further research is warranted to address the

significance of these epigenetic events.

MicroRNAs (miRNAs), a class of small, non-coding

RNAs that regulate gene expression at the posttranscrip-

tional level, have recently been suggested to be involved in

the hypothalamic control of energy balance. It has been

demonstrated that the expression of Dicer1, an essential

endoribonuclease for miRNA maturation, is regulated by

nutrient availability and excess in the hypothalamus

(Schneeberger et al. 2013). Furthermore, we have also

shown that deletion of Dicer1 in POMC neurons leads to

an obese phenotype characterized by increased adiposity,

hyperleptinemia, defective glucose metabolism, and

alterations in the pituitary–adrenal axis. This phenotype

is associated with a progressive POMC neuron degener-

ation, indicating a key role for miRNAs in the survival of

this population of neurons (Greenman et al. 2013,

Schneeberger et al. 2013). High-throughput sequencing

studies in ARC and PVN of rats have shown a specific

miRNA enrichment pattern that could be used to define a

prototypic profile in these brain regions. These miRNAs

include seven of the eight genes of the let-7 family, the

two miR-7 genes, miR-9 gene, and 5 0 copy of the three

miR-30 loci (Amar et al. 2012). Moreover, in situ

hybridization experiments have revealed a limited and

distinct expression of miR-7a in the hypothalamus,

preferentially colocalizing with AgRP neurons (Herzer

et al. 2012). Despite these efforts in describing the

miRNA transcriptome and patterns of expression in the

hypothalamus, the role of specific miRNAs in particular

neuronal circuits in the regulation of whole-body energy

balance still remains unknown.
Concluding remarks: neuronal circuitry
integration and physiological responses

As has been outlined above, organismal energy balance

is regulated by many factors through complex and
Published by Bioscientifica Ltd
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Figure 2

Schematic integration of the different levels of food intake and energy

balance regulation. Food intake and energy balance are coordinately

regulated by homeostatic and non-homeostatic neural mechanisms.

Circulating hormones and vagus stimuli inform the CNS about whole-body

nutritional and energy status. Leptin and insulin are believed to be involved

in the long-term regulation of energy balance, while GI hormones and vagal

afferents represent a short-term regulatory mechanism. These hormones act

in concert to engage specific neuronal circuits in homeostatic and hedonic

centers, establishing dynamic and complex interactions between these

different brain regions to elaborate coordinated endocrine, autonomic,

and behavioral responses to regulate energy balance. Sensory, emotional,

and social cues also influence ingestive behaviors probably through

non-homeostatic and higher brain structures. LHA, lateral hypothalamic

area; VTA, ventral tegmental area; NAc, nucleus accumbens.
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multi-level integration processes that involve multiple

neuronal circuits. The homeostatic system is basically

influenced by long-term (leptin and insulin) and

short-term (GI hormones and vagal inputs) signals that

act in concert to engage specific neuronal circuits in

the hypothalamus and brainstem aimed at fulfilling

whole-body metabolic needs. In addition to this

homeostatic module, the corticolimbic and mesolimbic

centers (which include the ventral tegmental area,

nucleus accumbens, prefrontal cortex, hippocampus,

and amygdala) integrate cognitive, hedonic, and

emotional stimuli in a non-homeostatic process

(Berthoud 2011). Circulating energy balance signals,

such as leptin and ghrelin, also target hedonic networks

to modulate appetite. However, this system may over-

ride homeostatic control and cause energy imbalance

(Berthoud 2011). In fact, striking similarities between

food reward and drug addiction mechanisms have

been reported (DiLeone et al. 2012). Therefore, these

complex interactions between the homeostatic and

non-homeostatic systems culminate in coordinated
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DOI: 10.1530/JOE-13-0398

� 2014 Society for Endocrinology
Printed in Great Britain
appetite and energy balance regulation through the

modulation of endocrine, autonomic, and behavioral

outputs (Fig. 2). The precise integrative mechanisms

of these different levels of regulation and the gene-

ration of specific physiological outputs are among the

main unsolved enigmas of the central regulation of

energy balance.
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