Switching of Na\(^+\), K\(^+\)-ATPase isoforms by salinity and prolactin in the gill of a cichlid fish

C K Tipsmark\(^1\), J P Breves\(^1\), A P Seale\(^1\), D T Lerner\(^1,3\), T Hirano\(^1\) and E G Grau\(^1\)

\(^1\)Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii 96744, USA
\(^2\)Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA
\(^3\)University of Hawaii Sea Grant College Program, University of Hawaii, Honolulu, Hawaii 96822, USA

(Correspondence should be addressed to E G Grau; Email: grau@hawaii.edu)

Abstract

We identified and investigated the changes in expression of two gill Na\(^+\), K\(^+\)-ATPase \(\alpha\)-subunit isoforms (\(\alpha\)-1a and \(\alpha\)-1b) in relationship with salinity acclimation in a cichlid fish, Mozambique tilapia. Transfer of freshwater (FW)-acclimated fish to seawater (SW) resulted in a marked reduction in \(\alpha\)-1a expression within 24 h and a significant increase in \(\alpha\)-1b expression with maximum levels attained 7 days after the transfer. In contrast, transfer of SW-acclimated fish to FW induced a marked increase in \(\alpha\)-1a expression within 2 days, while \(\alpha\)-1b expression decreased significantly after 14 days. Hypophysectomy resulted in a virtual shutdown of \(\alpha\)-1a mRNA expression in both FW- and SW-acclimated fish, whereas no significant effect was observed in \(\alpha\)-1b expression. Replacement therapy by ovine prolactin (oPrl) fully restored \(\alpha\)-1a expression in FW-acclimated fish, while cortisol had a modest, but significant, stimulatory effect on \(\alpha\)-1a expression. In hypophysectomized fish in SW, replacement therapy with oPrl alone or in combination with cortisol resulted in a marked increase in \(\alpha\)-1a mRNA to levels far exceeding those observed in sham-operated fish. Expression of \(\alpha\)-1b mRNA was unaffected by hormone treatment either in FW-acclimated fish or in SW-acclimated fish. The mRNA expression of \(\textit{fsyd-11}\), a regulatory Na\(^+\), K\(^+\)-ATPase subunit, was transiently enhanced during both FW and SW acclimation. In hypophysectomized fish in FW, oPrl and cortisol stimulated \(\textit{fsyd-11}\) expression in a synergistic manner. The clear Prl dependence of gill \(\alpha\)-1a expression may partially explain the importance of this hormone to hypersomoregulation in this species.

\textit{Journal of Endocrinology} (2011) \textbf{209}, 237–244

Introduction

The gill epithelium of euryhaline teleosts has an unusual functional flexibility insomuch as it shifts between ion uptake in freshwater (FW) and ion excretion in seawater (SW). In both environments, mitochondrion-rich cells (MRCs) and adjacent accessory and pavement cells are fundamental to compensatory ion transport, for which the driving force is a more general prerequisite for euryhalinity is unknown. In fish, a suite of endocrine factors coordinate the physiological changes necessary to respond to changes in environmental salinity, and among these, the pituitary hormones prolactin (Prl) and GH along with cortisol are of critical importance (Sakamoto & McCormick 2006). The importance of Prl in osmoregulation was first demonstrated by the finding that hypophysectomized killifish require replacement therapy either in FW-acclimated fish or in SW-acclimated fish. The mRNA expression of \(\textit{fsyd-11}\), a regulatory Na\(^+\), K\(^+\)-ATPase subunit, was transiently enhanced during both FW and SW acclimation. In hypophysectomized fish in FW, oPrl and cortisol stimulated \(\textit{fsyd-11}\) expression in a synergistic manner. The clear Prl dependence of gill \(\alpha\)-1a expression may partially explain the importance of this hormone to hypersomoregulation in this species. In fish, a suite of endocrine factors coordinate the physiological changes necessary to respond to changes in environmental salinity, and among these, the pituitary hormones prolactin (Prl) and GH along with cortisol are of critical importance (Sakamoto & McCormick 2006). The importance of Prl in osmoregulation was first demonstrated by the finding that hypophysectomized killifish require replacement therapy with ovine prolactin (oPrl) to survive in FW (Pickford & Phillips 1959). Prl treatment is associated with a marked reduction in extrarenal ion loss (Potts & Evans 1967). The effects of Prl on active ion uptake are somewhat unclear since both inhibition (e.g. killifish: Pickford \textit{et al.} 1970; rainbow trout: Madsen & Bern 1992; tilapia: Sakamoto \textit{et al.} 1997; seabream: Mancera \textit{et al.} 2002) and the lack of an effect (tilapia: Herndon \textit{et al.} 1991; brown trout: Madsen \textit{et al.} 1995) on gill Na\(^+\), K\(^+\)-ATPase activity have been reported. Independent of its effect on somatic growth, GH has the ability to facilitate osmoregulation in SW. This ability is supported by increased gill Na\(^+\), K\(^+\)-ATPase activity along with increased MRC size and quantity following GH
treatment, an effect observed in several species (e.g. brown trout: Maßen 1990; Atlantic salmon: McCormick 1996; tilapia: Sakamoto et al. 1997; killifish: Mancera & McCormick 1998). The corticosteroid, cortisol, is involved in both FW and SW osmoregulation (Sakamoto & McCormick 2006). The role of cortisol in SW acclimation has been documented in a variety of fish species, in which the steroid simultaneously stimulates gill Na\(^{+}\), K\(^{+}\)-ATPase activity and SW tolerance (e.g. Sakamoto et al. 2001). In the hypophysectomized FW eel, cortisol treatment restores normal plasma osmolality (Chan et al. 1968), indicating a role for the steroid in FW osmoregulation. Moreover, following hypophysectomy, catfish require both Prl and cortisol to osmoregulate in FW (Fortner & Pickford 1982, Eckert et al. 2001).

This study investigated the presence of gill Na\(^{+}\), K\(^{+}\)-ATPase isoforms in a euryhaline cichlid, the Mozambique tilapia which belongs to the more recently radiated group of perciform fish. Key regulators of Na\(^{+}\), K\(^{+}\)-ATPase activity include regulatory subunits, termed Fxyd proteins (Garty & Karlish 2006), that were recently described in Atlantic salmon (Tipsmark 2008, Tipsmark et al. 2010b) and green pufferfish (Wang et al. 2008). We identified Na\(^{+}\), K\(^{+}\)-ATPase catalytic (\(\alpha\) subunits) and regulatory (Fxyd proteins) isoforms in the expressed sequence tag (EST) database for tilapia using the NCBI web resource. We first examined changes in these isoforms following the transfer from FW to SW and vice versa. Then, hypophysectomy and replacement therapy trials were conducted to assess the relative contribution of environmental salinity and endocrine signaling to the expression of Na\(^{+}\), K\(^{+}\)-ATPase and Fxyd isoforms.

Materials and Methods

Fish

Male tilapia (Oreochromis mossambicus) were selected from an FW population maintained at the Hawaii Institute of Marine Biology, University of Hawaii. Fish were maintained outdoors with a continuous flow of FW (tap water: 0.98 mM Na\(^{+}\), 0.25 mM Ca\(^{2+}\), 0.01 mM Mg\(^{2+}\), and 0.04 mM K\(^{+}\)) under natural photoperiod and fed a commercial diet (Silver Cup Trout Chow, Nelson & Sons, Murray, UT, USA) at ∼5% of their body weight per day. Some fish were acclimated to SW (Kaneohe Bay, Hawaii; 34 ppt) for 4 weeks before the start of the FW transfer experiment. In all experiments, water temperature was maintained at 24–26 °C. The Institutional Animal Care and Use Committee of the University of Hawaii approved all surgical and experimental protocols.

Experiments

Experiment 1: SW challenge Fish (160–170 g) were held in 700 l tanks, and salinity was changed from FW to 70% SW (23 ppt) by opening a SW valve and adjusting the flow of incoming FW; 70% SW was reached after about 15 min. After 24 h, the FW valve was turned off to gradually raise the salinity to full-strength SW. This mode of SW acclimation was adopted to reduce handling stress and allow adaptive processes to be activated (Breves et al. 2010a). Control groups were maintained in FW for the entire experiment. Fish were fasted for the duration of the experiment. Fish were sampled (n=8) at 0, 1, 7, and 14 d after transition to SW. At the time of sampling, fish were netted and anesthetized with a lethal dose of 2-phenoxethanol (2 ml/l). They were rapidly decapitated, and 15–20 filaments from the first gill arch were frozen in liquid nitrogen and stored at −80 °C until RNA isolation and analyses of gene expression.

Experiment 2: FW challenge

Fish (75–180 g) were held in 7001 tanks and acclimated to SW under natural photoperiod for more than 4 weeks. At the start of the experiment, tank water was changed to FW with minimal disturbance by switching inflow from an SW valve to an FW valve as described previously (Breves et al. 2011). FW conditions were reached after 60 min. Control groups were maintained continuously in SW. Fish were fasted for the duration of the experiment. Fish were sampled at 0, 0:25, 1, 2, and 14 d after transition to FW (n=8).

Experiment 3: hypophysectomy and FW or SW transfer

Hypophysectomy and sham operation of FW-acclimated fish were performed by the transorbital technique (Nishioka 1994). Following the operation, hypophysectomized, sham-operated, and intact fish were transferred to recirculating aquaria containing brackish water (12 ppt). Following a postoperative recovery period in brackish water for 5–7 days, hypophysectomized, sham-operated, and intact fish (n=6–8) were exposed to FW or SW for 3 days by adding FW or SW directly to the recirculating aquaria. Tank water reached FW conditions within 90 min. Fish were transferred to SW by gradually adding SW to the aquaria to raise the salinity to 23 ppt after 90 min. After 24 h, SW was added again to raise the salinity to full-strength SW. Completeness of hypophysectomy was confirmed by postmortem inspection of the hypothalamic region.

Experiment 4: hypophysectomy and replacement therapy in FW or SW

Hypophysectomized fish, held in brackish water for 5–7 days (n=6–8), were injected i.p. with oPrl (5 μg/g body weight; Sigma), oGH (5 μg/g; National Hormone and Peptide Program, Torrance, CA, USA) or cortisol (1 μg/g; Sigma), either alone or in combination, and were exposed to FW or SW as in Experiment 3. Hormones were delivered in saline vehicle (0.9% NaCl; 1.0 μl/g body weight). The first injection was administered just prior to transfer to either FW or SW. After 24 h, fish were given a second injection. Fish were then left undisturbed for 48 h, after which time they were sampled as described previously. Sham-operated fish were injected with saline vehicle only.
Analytical techniques

Extraction of RNA and cDNA synthesis Total RNA was extracted by the TRI Reagent procedure (MRC, Cincinnati, OH, USA) according to the manufacturer’s recommendation. Total RNA concentrations were determined by measuring A_{260} in duplicate with a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). Complementary DNA was synthesized by reverse transcription carried out on 0.6 μg total RNA using qScript cDNA SuperMix (Quanta, Gaithersburg, MD, USA) according to the manufacturer’s instructions.

Sequences Non-redundant sequences of β-actin (GenBank Acc. No. AB037865), acidic ribosomal phosphoprotein p0 (rplp0; Acc. No. EF452495), and Na\(^+\), K\(^+\)-ATPase α-1b (atp1a1b; Acc. No. TMU82549) were used. Na\(^+\), K\(^+\)-ATPase α-1b has previously been characterized and annotated as an α-1 isoform in tilapia (Hwang et al. 1998). However, since it is similar to α-1b of the salmonid isoform, having all the specific conserved amino acid sequence (Jorgensen 2008), we used this nomenclature. Na\(^+\), K\(^+\)-ATPase α-1a sequences (atp1a1a; Acc. No. GR645170 and GR644771) were identified in the Nile tilapia (Oreochromis niloticus) transcriptome (Lee et al. 2010) based on a specific amino acid substitution in the fifth transmembrane domain (lysine instead of asparagine) in the cation binding site. This substitution is observed in previously examined α-1a isoforms and distinguishes them from the α-1b isoforms (Jorgensen 2008), fxyd-9 (GenBank Acc. No. GR611225, GR682782, GR684667, GR652932, GR654431, GR646358, GR629763, GR622096, GR618400, GR623531, GR614978, GR605558, GR604084, and GR644771) and fxyd-11 (GenBank Acc. No. GR648095, GR628272, and GR624008) were both identified in the O. niloticus transcriptome by searching with tBLASTn at the NCBI web resource using the relevant sequences known from Atlantic salmon (Tipsmark 2008; fxyd-9: NP001117201; fxyd-11: NP001117198).

Primers Primers were designed using Primer3 software (Rozen & Skaletsky 2000) and checked using NetPrimer software (Premier Biosoft International, Palo Alto, CA, USA). All primers were purchased from Applied Biosystems (Foster City, CA, USA). Primer sequences were tested for non-specific product amplification and primer–dimer formation by melting curve analysis; amplicon size was verified by agarose gel electrophoresis. Elongation factor 1a (ef-1a) primers have previously been reported (Breves et al. 2010b). Additional primers used were (5′–3′): β-actin (forward, CTCTT-CACGCTTTCCCTTCTC; reverse, ACAGGTCTTACC-GATGTTCG; amplicon size = 100 nt), acidic ribosomal phosphoprotein p0 (rplp0; forward, CCCCCTGTGATGTGACAGTG; reverse, GTGATACCCAGGCTGAGGAA; amplicon size = 82 nt), Na\(^+\), K\(^+\)-ATPase α-1a (forward, AACTGATTGGTGCCCTGGCAA; reverse, ATGCATTCTTG-GGGCTCTC; amplicon size = 80 nt), Na\(^+\), K\(^+\)-ATPase α-1b (forward, GGAGCGTGAGTGCTCCACTC; reverse, ATCCATGCTTTGTGGGTTA; amplicon size = 90 nt), fxyd-9 (forward, TCTCTGCTATTGTGGTTCG; reverse, TGGTCTTTCGCGAACAGCAG; amplicon size = 97 nt), and fxyd-11 (forward, TGCTGTCCAGCGCTTTGTGG; reverse, GACGATCTCCTCAAATCGTA; amplicon size = 80 nt).

Quantitative PCR Quantitative PCR (QPCR) assays were run on a StepOnePlus real-time PCR system (Applied Biosystems). Reactions were carried out with a cDNA amount equivalent to 15 ng total RNA, 200 nM forward and reverse primers, using Power SYBR Green PCR Master Mix (Applied Biosystems) in a total volume of 15 μL. Cycling conditions were 95 °C for 15 s and 60 °C for 60 s in 40 cycles. The geNorm (version 3.5) tool was applied to determine a normalization factor from the examined reference genes (β-actin, ef-1a and rplp0) and used to normalize the expression for the target genes (Vandesompele et al. 2002). geNorm establishes the individual stability of genes within a cluster and computes a geometric mean as a normalizing factor. Relative copy numbers of the target genes were calculated as \(E_{n}^{-}\), where \(C_{n}\) is the threshold cycle number and \(E_{n}\) is the amplification efficiency. Normalized units were obtained by dividing relative copy number of target genes with the determined normalization factor.

Statistical analysis

The salinity transfer experiments were analyzed by a two-factorial ANOVA followed by the Bonferroni-adjusted Fisher’s LSD test. The tissue distribution and hypophysectomy experiments were analyzed with one-way ANOVA, and differences between group means were assessed by Tukey’s HSD test. When required, transformation of data was done to meet the ANOVA assumption of homogeneity of variances. All statistical analyses were performed using GraphPad Prism 4.0 software (San Diego, CA, USA), and significant differences were accepted when \(P<0.05\).

Results

Tissue distribution

The tissue distribution of Na\(^+\), K\(^+\)-ATPase catalytic α-1a and α-1b isoforms and the putative regulatory subunit α-1a isoforms, fxyd-9 and fxyd-11, was examined in FW-acclimated tilapia. The α-1a isoform was expressed in 2–4 orders of magnitude higher in the gill than in the other examined tissues (Fig. 1A). The levels of α-1b isoform were highest in the intestine and kidney (Fig. 1B). fxyd-9 was expressed at similar levels in most tissues, with higher levels found in the brain and stomach (Fig. 1C). fxyd-11 exhibited 3–4 orders of magnitude higher expression in the gill than in the other tissues (Fig. 1D).
240

C K TIPSMARK and others  ·  Prolactin dependence of FW-type Na\(^+\), K\(^+\)-ATPase

2 days, and remained high during the remainder of the experiment (Fig. 3A). There was no significant change in \(\alpha\)-1b expression during the first 2 days; a significant reduction was observed only after 14 days (Fig. 3B). A significant increase in \(fxyd\)-9 expression was observed in FW-challenged fish at day 14, while \(fxyd\)-11 expression was elevated after 2 days (Fig. 3C and D).

**Hypophysectomy and FW or SW transfer**

In both FW- and SW-exposed fish, gill \(\alpha\)-1a mRNA expression was markedly reduced in hypophysectomized fish compared with levels observed in intact and sham-operated controls (Fig. 4A). The expression of \(\alpha\)-1b, \(fxyd\)-9 and \(fxyd\)-11 was not significantly altered by hypophysectomy in FW- or SW-acclimated fish (Fig. 4B–D).

**Hypophysectomy and replacement therapy**

In saline-injected, hypophysectomized tilapia, transfer from brackish water to FW for 3 days (controls) produced a virtual shutdown of gill \(\alpha\)-1a mRNA expression compared with levels in sham-operated fish (Fig. 5A). Replacement therapy by oPrl alone or in combination with cortisol restored this drop-off in expression. Cortisol had a slight but significant stimulatory effect on \(\alpha\)-1a expression. Gill \(\alpha\)-1b and \(fxyd\)-9 mRNA were unaffected by hypophysectomy and hormone treatment (Fig. 5B and C). On the other hand, pituitary removal depressed \(fxyd\)-11 expression significantly. Both oPrl and cortisol restored \(fxyd\)-11 expression in hypophysectomized fish (Fig. 5D). The effects of oPrl and cortisol on \(fxyd\)-11 were synergistic and were not observed for \(\alpha\)-1a.

Hypophysectomized tilapia transferred to SW also experienced an inhibitory effect of pituitary removal on gill \(\alpha\)-1a

**Figure 1** Expression of Na\(^+\), K\(^+\)-ATPase \(\alpha\)-1a subunit (A), \(\alpha\)-1b subunit (B), \(fxyd\)-9 (C), and \(fxyd\)-11 (D) mRNA in the brain, gill, esophagus, stomach, anterior intestine (ant. int.), middle intestine (mid. int.), posterior intestine (post. int.), kidney, skeletal muscle (muscle), liver, and urinary bladder (urin. bladder) in FW-acclimated tilapia. ND, no detection. Groups with no shared letters are statistically different. Means ± S.E.M. (n = 4–5).

**Transfer from FW to SW**

When FW-acclimated tilapia were exposed to SW, \(\alpha\)-1a levels rapidly declined after 1 day and remained low during the remainder of the experiment (Fig. 2A). Transfer to SW produced a doubling of the \(\alpha\)-1b expression by day 1 and a tenfold rise after a week (Fig. 2B). \(fxyd\)-9 expression doubled after 1 day in SW, but was not significantly different from FW controls at days 7 and 14 (Fig. 2C). \(fxyd\)-11 was elevated threefold after 1 and 7 days, but no significant difference was observed at day 14 (Fig. 2D).

**Transfer from SW to FW**

When SW-acclimated tilapia were exposed to FW, \(\alpha\)-1a mRNA increased by tenfold after 1 day and by 60-fold after

---

*Journal of Endocrinology (2011) 209, 237–244*

www.endocrinology-journals.org
mRNA expression. As in the FW-exposed fish, treatment with oPrl alone or in combination with cortisol induced significant increases in α-1a expression to levels significantly higher than those in the sham-operated fish (Fig. 6A). No significant change was observed in α-1b and fxyd-9 expression following hormone injections (Fig. 6B and C). fxyd-11 expression patterns were variable following hormone injections. Compared with sham-operated fish, hypophyssectomized fish treated with either oPrl or oGH showed significantly higher expression of fxyd-11, although the levels were not significantly different from saline-injected hypophyssectomized controls (Fig. 6D). Treatment with cortisol alone or in combination with oPrl or oGH had no significant effect compared with levels in sham-operated or saline-injected, hypophyssectomized fish.

**Discussion**

This study identified two branchial Na\(^+\), K\(^+\)-ATPase α isoforms in a cichlid fish and verified a strong relationship with environmental salinity in their expression, suggesting that α-1a is exclusively associated with branchial ion uptake in FW, while α-1b is involved in ion extrusion in SW. Hypophyssectomy and hormone replacement studies showed that mRNA expression of the FW isoform (α-1a) is dependent on pituitary Prl. Conversely, the mRNA expression of the SW isoform (α-1b) showed no dependence on pituitary hormones. Concerning the regulatory Fxyd proteins, fxyd-9 was not impacted by hormonal factors, while fxyd-11 expression was stimulated by both oPrl and cortisol. The transient stimulation of fxyd-11 during both FW and SW acclimation suggests a key role for this regulatory subunit in net ion transport transitions in gill.

Recently, a series of studies has elucidated the subcellular components of FW-type MRCs in Mozambique tilapia (Hiroi et al. 2008, Inokuchi et al. 2008, Watanabe et al. 2008). These studies described the expression of either a sodium proton exchanger type 3 (nhe3) or a sodium chloride cotransporter (ncc) in two distinct FW-type MRCs. In accordance with their activity to support Cl\(^-\) uptake in hypoosmotic environments (Horig et al. 2009), Ncc-expressing MRCs are stimulated by oPrl injection (Breves et al. 2010b). The drop in Na\(^+\), K\(^+\)-ATPase α-1a mRNA during SW acclimation observed in this study correlates well with decreased ncc and nhe3 mRNA expression reported for larval and adult tilapia transferred to SW (Hiroi et al. 2008, Breves et al. 2010a). Our results showed that Na\(^+\), K\(^+\)-ATPase α-1a expression is stimulated by both FW and Prl. Accordingly, future efforts should employ in situ hybridization and immunohistochemical methods to fully describe the gene and protein expression patterns of Na\(^+\), K\(^+\)-ATPase α-subunits in the four distinct MRC subtypes described in tilapia by Hiroi et al. (2008).

The tissue distributions of Na\(^+\), K\(^+\)-ATPase α subunits established in this study are largely in accordance with those reported in salmonids. In tilapia, the α-1a isoform appears to be gill specific, as in rainbow trout (Richards et al. 2003) and Atlantic salmon (Tipsmark et al. 2010a). The tilapia α-1b isoform was highly expressed in the intestinal sections of FW specimens, with comparatively lower expression in the gill. While keeping in mind that branchial expression of α-1b in SW is more than tenfold higher than that in FW, this still contrasts somewhat with findings in salmonids. In rainbow trout and Atlantic salmon, the α-1b isoform is not expressed.
substantially in the intestine (Richards et al. 2003, Tipsmark et al. 2010a). The distribution of Fxyd proteins is in accordance with previous studies. Thus, fxyd-9 is expressed in a wide variety of tissues in tilapia (this study), salmon (Tipsmark 2008) and pufferfish (Wang et al. 2008). On the other hand, fxyd-11 is robustly expressed in the tilapia gill, as observed in Atlantic salmon (Tipsmark 2008) and zebrafish (Saito et al. 2010). This would suggest that fxyd-11 is expressed in a gill-specific cell type, such as the MRC. It has been shown that Fxyd-11 is co-localized with the Na\(^{+}\), K\(^{+}\)-ATPase \(\alpha\)-1a subunit (Saito et al. 2010) and in both FW and SW salmon (Tipsmark et al. 2010b). This does not preclude involvement of the more generally expressed fxyd-9 in the control of MRCs, at least in some species, since this isoform co-localized with Na\(^{+}\), K\(^{+}\)-ATPase in pufferfish gill (Wang et al. 2008). It is to be noted that the exact functions of the Fxyd proteins, e.g. involvement in endocrine–paracrine regulation or a general modulation of kinetics, are still unknown. Future work should assess whether one or more Fxyd isoforms are co-localized with Na\(^{+}\), K\(^{+}\)-ATPase \(\alpha\) subunits in tilapia gill.

The changes in \(\alpha\)-1a and \(\alpha\)-1b isoforms observed in tilapia after FW and SW transition in this study largely mirror previous reports in rainbow trout (Richards et al. 2003), Arctic char (Bystriansky et al. 2006) and Atlantic salmon (Madsen et al. 2009, McCormick et al. 2009). The marked elevation in \(\alpha\)-1a expression after FW transition (60-fold) and \(\alpha\)-1b expression after SW transition (tenfold) observed in this study is of a greater magnitude than that reported in the salmonid fishes described earlier. The increase in \(\alpha\)-1b mRNA after SW transition is similar to the previous reports by Hwang et al. (1998) and Lin et al. (2004) in tilapia, regarding the gill \(\alpha\)-1. They classified their isofrom as \(\alpha\)-1; however, our sequence analyses indicate that it is a homolog to the salmonid \(\alpha\)-1b. As described earlier in the Materials and Methods section, the classification of tilapia \(\alpha\)-1a and \(\alpha\)-1b is based on the criteria outlined by Jorgensen (2008), an interpretation that is also clearly supported by the regulatory patterns observed in this study. While the functional significance of isofrom switching in teleost gill is an open question, Jorgensen (2008) suggested the \(\alpha\)-1a subunit may operate with different Na\(^{+}\) stoichiometry from the \(\alpha\)-1b subunit, thereby making ion extrusion in FW thermodynamically favorable.

An interesting pattern observed in this study is that gene expression for \(\alpha\)-1a, but not for \(\alpha\)-1b, is under pituitary control in tilapia. The lack of effect of hypophysectomy on the SW-type Na\(^{+}\), K\(^{+}\)-ATPase isoform (\(\alpha\)-1b) may at first seem puzzling. Nonetheless, this pattern is in accordance with our previous finding that a Na\(^{+}\), K\(^{+}\), 2Cl\(^{-}\) cotransporter (NKCC1), a hallmark of SW-type MRCs, is insensitive to hypophysectomy (Breves et al. 2010b). It has been shown that branchial Na\(^{+}\), K\(^{+}\)-ATPase activity in Mozambique tilapia is stimulated by oGH and diminished by oPrl treatment (Sakamoto et al. 1997). It seems likely that these effects were mediated by the SW-type Na\(^{+}\), K\(^{+}\)-ATPase (\(\alpha\)-1b),
probably accompanied by Fxyd-11, since oGH or oPrl were injected into hypophysectomized fish kept in a hyperosmotic environment (25 ppt). The results by Sakamoto et al. (1997) are in agreement with findings in Atlantic salmon, showing a synergistic effect of cortisol and homologous GH on branchial SW-type Na\(^+\), K\(^+\)-ATPase (\(\alpha\)-1b) gene expression (Tipsmark & Madsen 2009). Since we used a single dose of hormones and one time point for sampling, we cannot rule out that we may have missed actions of GH on factors that support hypoosmoregulatory strategies. Another explanation worth investigating is that O. mossambicus is a marine species, and that FW adaptability is a derived characteristic. Under this scenario, it would not be surprising that \(\alpha\)-1b might be expressed constitutively upon exposure to a hyperosmotic environment.

On the other hand, FW-type MRCs that express Ncc show a complete dependence on pituitary Prl (Breves et al. 2010b). This may underlie, at least in part, the inhibitory effect of Prl on SW acclimation (Pisam et al. 1993), since oPrl stimulates plasma Na\(^+\) through the recruitment of FW-type MRCs (Breves et al. 2010b). This interpretation is in agreement with the present findings that oPrl treatment in hypophysectomized tilapia in SW induced a higher level of \(\alpha\)-1a expression, even above the level of sham-operated fish (see Fig. 6A). On the other hand, in SW-acclimated Atlantic salmon, treatment with salmon Prl inhibited SW-type MRC abundance as shown by an overall reduction in gill \(\alpha\)-1b and \(nkcc1\)a mRNA levels (Tipsmark & Madsen 2009).

In summary, this study provides the first evidence for a switch in the catalytic isoform of the branchial Na\(^+\), K\(^+\)-ATPase during acclimation to FW- and SW-environments in a non-salmonid teleost. Moreover, this study demonstrates complete dependence on pituitary-derived Prl for expression of the Na\(^+\), K\(^+\)-ATPase \(\alpha\)-1a (FW-type) catalytic subunit. Our data suggest that Fxyd-11 may be an essential component of both FW- and SW-type MRCs, and that Prl is involved in regulating the gene in FW. When the patterns that we observed in tilapia are considered with previous reports in salmonids regarding isoform switching, we propose that Na\(^+\), K\(^+\)-ATPase \(\alpha\)-1 isoform switching is an essential and general prerequisite in euryhaline fish for adaptation to changes in salinity.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

This work was supported by the National Research Initiative Competitive Grants (2008-35206-18785 and 2008-35206-18787) from the USDA National Institute of Food and Agriculture, and by the National Science Foundation (IOB-05-17769 and OISE/08-52518).
in the gills of rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Journal of Membrane Biology 223 37–47. (doi:10.1007/s00232-008-9111-y)


Received in final form 2 January 2011

Accepted 17 February 2011

Made available online as an Accepted Preprint 17 February 2011

Journal of Endocrinology (2011) 209, 237–244

www.endocrinology-journals.org