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Abstract

Synthetic glucocorticoids (GCs) potently inhibit the
expression of pro-inflammatory genes and are widely used
in the treatment of inflammatory diseases. However, some
patients are resistant to the therapeutic effects of GCs, and
many suffer deleterious side effects from these drugs.
Furthermore, the precise mechanisms by which GCs
inhibit pro-inflammatory gene expression remain unclear.

A number of recent papers report that GCs induce the
sustained expression of MAP kinase (MAPK) phosphatase
1 (MKP-1), a negative regulator of MAPK signal trans-
duction pathways. The potential relevance of MKP-1 to
some of the biological effects of GCs is discussed.
Journal of Endocrinology (2003) 178, 5–12

Introduction

Endogenous glucocorticoids (GCs) are chiefly synthesised
in the adrenal gland, under the regulation of the
hypothalamic–pituitary–adrenal (HPA) axis. GC synthesis
is initiated by stimulation of the hypothalamus to secrete
corticotrophin releasing hormone (CRH). This acts upon
the anterior pituitary gland to induce release of adreno-
corticotrophic hormone (ACTH). ACTH, in turn,
induces the release of GCs such as cortisol from the adrenal
cortex (Newton 2000). One of the major functions of GCs
is the suppression of the immune system, for example by
inhibiting the expression of numerous pro-inflammatory
genes. Since the production of CRH can be induced by
pro-inflammatory cytokines (Besedovsky et al. 1986, Del
Rey et al. 1987), the HPA axis serves as a negative
feedback mechanism to limit inflammatory responses to
infection. Hence the experimental perturbation of the
HPA axis (for example by adrenalectomy) impairs the
ability of animals to effectively control inflammation
(Masferrer et al. 1992, Green et al. 1995, Goujon et al.
1996, Ruzek et al. 1999). The HPA axis is also thought
to function abnormally in some chronic inflammatory
diseases, and in strains of experimental animals which are
prone to auto-immunity (Jafarian-Tehrani & Sternberg
2000, Sternberg 2001, Crofford 2002). However, cause

and effect can be difficult to disentangle because of the
multiple levels of cross-talk between the HPA axis and the
immune system. The ability of GCs to inhibit expression
of a wide variety of pro-inflammatory genes underlies their
use in the treatment of chronic inflammatory diseases such
as asthma, Crohn’s disease, systemic lupus erythematosis
and rheumatoid arthritis. Two poorly understood biologi-
cal effects limit their clinical use. First, GCs are associated
with a number of side effects of varying severity, such as
osteoporosis, diabetes, hypertension and Cushing’s syn-
drome. Secondly, a small number of patients are resistant
to the therapeutic effects of GCs, and may consequently
be difficult to treat (DeRijk & Sternberg 1997, Loke et al.
2002). The anti-inflammatory mechanisms of action of
corticosteroids have been extensively studied for decades,
with a view to understanding and overcoming these
clinical problems, for example through the design of novel
synthetic GCs.

Positive and negative regulation of gene
expression by glucocorticoids

The effects of GCs are mediated by a 777 amino acid
receptor, which is a member of the nuclear hormone
receptor superfamily (Newton 2000). In the absence of
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ligand the glucocorticoid receptor (GR) is retained in the
cytoplasm in a complex with a number of proteins,
including the large heat shock protein hsp90. Upon ligand
binding this complex is disrupted and the GR migrates to
the nucleus. The transcriptional induction of genes such as
tyrosine amino transferase (TAT) and phosphoenolpyru-
vate carboxykinase (PEPCK) is dependent upon dimer-
isation of GR and binding to a palindromic promoter
sequence, the glucocorticoid response element (GRE). As
described in several recent reviews, GR negatively regu-
lates the expression of pro-inflammatory genes by means of
transrepression (Gottlicher et al. 1998, De Bosscher et al.
2000, Adcock & Caramori 2001, Karin & Chang 2001). In
this mechanism, ligand-bound, nuclear GR directly inter-
acts with transcription factors such as nuclear factor kappa
B (NF�B) and AP1, impairing their ability to induce gene
expression. The activation of transcription is dependent
upon the recruitment of enzyme complexes which medi-
ate localised chromatin modification such as histone
acetylation (Naar et al. 2001, Roth et al. 2001, Berger
2002, Rahman 2002), and this process appears to be
influenced by GR (Ito et al. 2000, 2001). Because NF�B
is activated by pro-inflammatory stimuli and required for
transcriptional activation of very many pro-inflammatory
genes (Barnes & Karin 1997, Caamano & Hunter 2002),
the transrepression mechanism may account for many of
the anti-inflammatory effects of GCs. A single amino acid
mutation of GR has been described, which impairs GR
dimerisation and activation of transcription through GREs.
In transfected cells the dimerisation defective mutant
(GRdim) is capable of inhibiting NF�B function (Heck
et al. 1994, 1997). More significantly, mice which express
only GRdim show no impairment in their anti-
inflammatory responses to GCs (Reichardt et al. 1998,
2001, Tuckermann et al. 1999). To some extent trans-
repression and transactivation mechanisms of GR can also
be uncoupled using novel ‘dissociated’ GCs, which are
selectively impaired in one or other function (Vayssiere
et al. 1997, Vanden Berghe et al. 1999, Belvisi et al. 2001).
For example GCs which poorly activate transcription
through palindromic GREs retain some ability to
transrepress NF�B and AP1.

These observations lead to the hypothesis (sometimes
stated as fact) that deleterious side effects of GCs are
mediated by dimerisation-dependent transcriptional
activation by GR, whilst anti-inflammatory effects are
mediated by dimerisation-independent transrepression by
GR. However, this hypothesis remains open to challenge
for a number of reasons. A number of broadly anti-
inflammatory genes, including the NF�B inhibitor
I�B�, lipocortin and interleukin (IL)-1 type II receptor
are transcriptionally induced by GCs (Newton 2000),
although their relevance to the anti-inflammatory effects
of GCs is disputed. Some GC inducible genes do not
possess palindromic GREs, and may be regulated in a
manner which does not depend upon GR dimerisation

(Diamond et al. 1990, Cella et al. 1998, Cha et al. 1998).
Dimerisation-independent GC inducible genes could
include important anti-inflammatory mediators, a possi-
bility which might be assessed by expression profiling of
GC responses in wild type and GRdim/GRdim mice.
Such a study has not yet been reported. Studies using dis-
sociated GCs focus upon well characterised, palindromic
GRE-dependent genes such as TAT and PEPCK, and
may likewise fail to address atypical GC inducible genes.
In any case the selectivity of impairment of transactiv-
ation or transrepression achieved with dissociated GCs is
often imperfect, cell type- and species-specific. Exper-
iments employing such compounds must be interpreted
with caution. Finally, many pro-inflammatory genes are
repressed by GCs at a post-transcriptional level, via
mRNA destabilisation or inhibition of translation (refer-
ences in Clark et al. 2003). These phenomena cannot
be accounted for by transrepression, and suggest the
existence of an additional anti-inflammatory mechanism
of GCs.

Post-transcriptional regulation of
pro-inflammatory gene expression

The mRNAs encoding many immune mediators contain
adenosine/uridine rich elements (AREs) within their 3�
untranslated regions (UTRs) (Caput et al. 1986, Shaw &
Kamen 1986, Chen & Shyu 1995). These sequences were
initially characterised as destabilising elements which con-
ferred a short mRNA half life, contributing to the rapid
responsiveness of gene expression in the immune system.
It has subsequently become clear that AREs can also be
involved in the dynamic regulation of mRNA stability,
notably by the mitogen activated protein kinase (MAPK)
p38 signalling pathway (Clark et al. 2003). This pathway
(Fig. 1) is activated by pro-inflammatory stimuli such as
IL-1 and tumour necrosis factor � (TNF�), bacterial
lipopolysaccharide (LPS) and ultraviolet irradiation
(Ono & Han 2000). MAPK p38 itself is activated by
phosphorylation of both threonine and tyrosine residues
within a Thr-Gly-Tyr motif, catalysed by the dual
specificity MAPK kinases, MKK6 or MKK3. The acti-
vation of p38 is terminated by removal of one or both of
the activating phosphate groups, catalysed by serine/
threonine-specific phosphatases, tyrosine-specific phos-
phatases or dual specificity phosphatases (which are able to
dephosphorylate both the phospho-threonine and the
phospho-tyrosine residues). Members of each class of
phosphatase are capable of inactivating p38 (Saxena et al.
1998, Takekawa et al. 1998, 2000, Camps et al.
2000, Keyse 2000). MAPK p38 activates the kinase
MAPKAPK-2 which, in turn, targets the AREs of certain
pro-inflammatory mRNAs to bring about their stabilisa-
tion (Winzen et al. 1999, Lasa et al. 2000, Clark et al.
2003).
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Induction of MAPK phosphatase 1 by
glucocorticoids

It is striking that many genes that are positively regulated
at a post-transcriptional level by p38 are negatively regu-
lated at the same level by GCs (Table 1). Prompted by this
observation, we investigated the effect of GCs upon the
p38 pathway, and showed that dexamethasone destabilised
cyclooxygenase 2 (Cox-2) mRNA by inhibiting the
function, but not the expression of MAPK p38 (Lasa et al.
2001). The inhibition of p38 was then shown to be
mediated by a phosphatase (Lasa et al. 2002). We and
others demonstrated that dexamethasone induces the
expression of MAPK phosphatase 1 (MKP-1), a dual
specificity phosphatase which potently inactivates p38
(Kassel et al. 2001, Chen et al. 2002, Lasa et al. 2002).
This induction was mediated by the GR and dependent
upon ongoing transcription. No other known p38-
inactivating phosphatases were significantly induced by
dexamethasone, and cells which failed to express MKP-1
also failed to down-regulate p38 activity in response to
dexamethasone (Lasa et al. 2002). In mast cells an ad-
ditional level of regulation was described, in which GCs
inhibited the degradation of MKP-1 (Kassel et al. 2001).

The precise mechanisms of regulation of MKP-1 expres-
sion and the impact of this additional, non-genomic
pathway in cells other than mast cells are not yet clear.
Nevertheless, it is likely that MKP-1 plays a role in the
inhibition of p38 and the consequent destabilisation of
pro-inflammatory mRNAs by GCs.

Transcriptional and post-transcriptional
mechanisms of action of glucocorticoids

An important distinction between transcriptional and post-
transcriptional mechanisms of inhibition of pro-
inflammatory gene expression is their time dependence.
Transrepression can be effective only during the period
when the transcription of the pro-inflammatory gene is
active. For many pro-inflammatory genes this transcrip-
tional window may be relatively brief. In contrast, the
destabilisation of a pro-inflammatory mRNA or the inhi-
bition of its translation may have a profound effect on gene
expression even if it occurs some time after the pro-
inflammatory stimulus and the period of active transcrip-
tion. This distinction is illustrated by the example of a lung
epithelial cell line, which expresses the pro-inflammatory
mediator Cox-2 in response to IL-1. The synthetic GC,
dexamethasone, destabilises Cox-2 mRNA and inhibits
Cox-2 expression even if added 10 h after the stimulus. In
contrast, the transcriptional inhibitor, actinomycin D, is
able to inhibit Cox-2 expression only if added within an
hour of the IL-1 stimulus (Newton et al. 1998). Post-
transcriptional repression allows cells to rapidly and specifi-
cally switch off gene expression in response to extracellular
signals, a property which is invaluable in the context of the
immune system (Clark 2000). In a physiological context
cells will be recruited to sites of inflammation, exposed to
pro-inflammatory stimuli, endogenous or exogenous GCs
at different stages. It is arguable that the efficient inhibition
of an inflammatory response may require both transcrip-
tional and post-transcriptional mechanisms to block the
induction of expression of pro-inflammatory mRNAs, and
to rapidly clear pre-existing transcripts. Experimental
systems have typically been designed to address either
transcriptional or post-transcriptional suppression of pro-
inflammatory gene expression, and do not make clear the
relative contributions of these processes in vivo. In fact
changes in steady state mRNA have often been ascribed to
transcriptional regulation without assessing possible
changes in mRNA stability.

Physiological significance of MAPK phosphatase 1
gene expression

The phosphatase MKP-1 preferentially inactivates MAPK
p38 and c-Jun N-terminal kinase (JNK) (Franklin &
Kraft 1997), but under some circumstances may also

Figure 1 Organisation of the MAPK p38 pathway.
Pro-inflammatory stimuli result in the activation of MKK6, a dual
specificity kinase. MKK6 activates p38 by phosphorylating
threonine and tyrosine residues within the TGY activation motif. In
turn, p38 phosphorylates and activates a number of substrates,
including MK2, which is implicated in the post-transcriptional
regulation of several pro-inflammatory genes. Because both
threonine and tyrosine phosphorylations are required for its full
activation, p38 can be inactivated by serine/threonine-specific
phosphatases, tyrosine-specific phosphatases or dual specificity
phosphatases. MKK6, MAPK kinase 6; MK2, MAPK activated
protein kinase 2; S/T P-ase, serine/threonine specific phosphatase;
Y P-ase, tyrosine specific phosphatase; DUSP, dual specificity
phosphatase; P, phosphate group.
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dephosphorylate extracellular signal regulated kinase (Erk)
(Camps et al. 2000, Keyse 2000). Its expression is induced
by a remarkable variety of stimuli, including cellular
stresses, LPS, pro-inflammatory cytokines and agonists
with anti-inflammatory effects, including transforming
growth factor (TGF)-�, cholera toxin B subunit and
cAMP elevating agents (Keyse & Emslie 1992, Guo et al.
1998, Burgun et al. 2000, Valledor et al. 2000, Chen et al.
2002, Lasa et al. 2002, Xiao et al. 2002). Sustained
GC-induced expression of MKP-1 has been demonstrated
in HeLa cells (Lasa et al. 2002), a rat mast cell line (Kassel
et al. 2001) and a mouse macrophage cell line (Chen et al.
2002), in all of which it appears to mediate inhibition of
MAPK signalling and pro-inflammatory gene expression
in response to cell stimulation. As the MAPK pathways are
pleiotrophic regulators of gene expression in the immune
system (Kracht & Saklatvala 2002), MKP-1 may be an
important negative regulator of many aspects of the
inflammatory response. MAPK p38 regulates transcription
via factors that include MEF2C, ATF2 and NF�B
(Treisman 1996, Ono & Han 2000, Schmitz et al. 2001,
Vermeulen et al. 2003), whereas JNK is an activator of
AP1 and other transcription factors (Whitmarsh & Davis
1996, Ip & Davis 1998), suggesting a potential role for
MKP-1 in the inhibition of transcription by GR. How-
ever, GCs may suppress JNK activity in the absence of
ongoing transcription (Caelles et al. 1997, Gonzalez et al.
2000), and the dissociated GC RU38486, which does not
induce MKP-1 gene expression (Lasa et al. 2002), retains
some ability to transrepress AP1 (Heck et al. 1994,
Vayssiere et al. 1997). Induction of MKP-1, therefore,
appears to be dispensible for transrepression, yet
may provide an additional mechanism for inhibition of
transcription by GCs.

As determined in tissue culture systems, the properties
of MKP-1 suggest a versatile role for this phosphatase in
the negative regulation of immune responses (Chen et al.
2002). However, several questions remain to be answered
before the physiological significance of this phosphatase
can be understood. Do GCs inhibit MAPK function and
induce MKP-1 expression in vivo, particularly in physio-
logically relevant cell types such as macrophages, mast
cells, gut and lung epithelia? Are other phosphatases
induced by GCs in vivo? Is the induction of MKP-1
dependent on GR dimerisation, for example does it occur
in mouse cells which express only the dimerisation defec-
tive form of the receptor? How does its expression respond
to novel, dissociated GCs? Finally, does the absence of
MKP-1 significantly impair the anti-inflammatory effects
of GCs? The latter question will be most easily addressed
by means of antisense or RNA interference technology, or
using an MKP-1 knock out mouse line which was
described several years ago (Dorfman et al. 1996). The
MKP-1 null mouse develops normally and shows no
abnormalities in the regulation of Erk function; however
the regulation of p38 and JNK was not examined, nor
were the responses to pro-inflammatory stimuli or GCs.

If MKP-1 plays a significant role in the suppression of
inflammation by GCs, it follows that GC resistance in
some inflammatory disease states could be related to
defects in the expression or function of MKP-1. Elevated
JNK and p38 activities have been described in inflamma-
tory diseases, and are possible targets for clinical inter-
vention (Badger et al. 1996, Hallsworth et al. 2001, Kumar
et al. 2001, Hommes et al. 2002, Waetzig et al. 2002). GC
resistance in asthma and inflammatory bowel disease may
be associated with a failure of GCs to inhibit JNK and p38
(Sousa et al. 1999, Bantel et al. 2002). Because these

Table 1 Positive and negative post-transcriptional regulation of gene expression by GCs
and the stress activated protein kinases p38 and JNK

Positive post-transcriptional
regulation by p38 or JNK

Negative post-transcriptional
regulation by GCs

Gene
Cox-2 Dean et al. (1999), Lasa et al.

(2000), Ridley et al. (1998)
Lasa et al. (2001), Newton
et al. (1998)

IL-1 Wang et al. (1999) Amano et al. (1993)
IL-2 Chen et al. (1998) Fessler et al. (1996)
IL-6 Miyazawa et al. (1998),

Winzen et al. (1999)
Amano et al. (1993), Tobler
et al. (1992)

IL-8 Winzen et al. (1999) Chang et al. (2001), Tobler
et al. (1992)

TNF� Brook et al. (2000), Rutault
et al. (2001), Wang et al.
(1999)

Han et al. (1990), Kontoyiannis
et al. (1999), Swantek et al.
(1997)

GM-CSF Winzen et al. (1999) Tobler et al. (1992)
VEGF Pages et al. (2000) Gille et al. (2001)
MMP-1 and -3 Reunanen et al. (2002) Delany & Brinckerhoff (1992)

GM-CSF, granulocyte-macrophage colony stimulating factor; VEGF, vascular endothelial growth factor;
MMP, matrix metalloproteinase.
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kinases negatively regulate GR function (Rogatsky et al.
1998, Irusen et al. 2002), the elevation of MAPK activity
could be self-perpetuating. In other words an initial defect
in GC-induced MKP-1 expression or activity might
increase MAPK activity, impairing GR function and
further inhibiting the induction of MKP-1 expression
(Fig. 2). Consequences of the fracture of this regulatory
loop might include increases in transcription of pro-
inflammatory genes, or in the stability of the mRNAs
produced.

Several mechanisms are employed by GCs to inhibit the
expression of pro-inflammatory genes, hence there are
likely to be several paths to GC insensitivity. The involve-
ment of MKP-1 in these phenomena should become
clearer over the next few years. Interestingly, GC-induced
osteoporosis in the rat is prevented by sodium ortho-
vanadate, an efficient inhibitor of tyrosine phosphatases,
including MKP-1 (Hulley et al. 1998, 2002). The involve-
ment of MKP-1 in the side effects of GCs may also be
worth further investigation.

Note added in proof

It was recently reported that GCs also induce the expres-
sion of MKP-1 in osteoblasts (Engelbrecht et al. 2003).
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