Different transporters for tri-iodothyronine (T₃) and thyroxine (T₄) in the human choriocarcinoma cell line, JAR

K A Powell¹, A M Mitchell¹, S W Manley² and R H Mortimer¹,³

¹Conjoint Endocrine Laboratory, Royal Brisbane Hospital Research Foundation, The Bancroft Centre, 300 Herston Road, Brisbane, Queensland 4029, Australia
²Department of Physiology, The University of Queensland, Queensland 4072, Australia
³Department of Pharmacology, Obstetrics and Gynaecology, The University of Queensland, Queensland 4072, Australia

(Requests for offprints should be addressed to K A Powell; Email: kellieP@qimr.edu.au)

Abstract

We investigated transport systems for tri-iodothyronine (T₃) and thyroxine (T₄) in the human choriocarcinoma cell line, JAR, using a range of structurally similar compounds to determine whether these thyroid hormones are transported by common or different mechanisms. Saturable T₃ but not saturable T₄ uptake was inhibited by a wide range of aromatic compounds (nitrendipine, nifedipine, verapamil, meclofenamic acid, mefenamic acid, diazepam, phenytoin).

Nitrendipine and diazepam were the most effective inhibitors of saturable thyroid hormone uptake. Nitrendipine decreased the K_m for T₄ uptake from a control value of around 500 nM to around 300 nM ($n=6$). In contrast, the K_m for T₃ uptake was increased from a control value of around 300 nM to around 750 nM ($n=4$). Diazepam had similar effects. This divergent shift in affinity for the uptake of T₃ and T₄ suggested that separate uptake systems exist for these two thyroid hormones.

This provides evidence for at least two transporters mediating uptake of T₃ and T₄ in JAR cells: a specific T₄ transporter that does not interact with T₃ or structurally similar compounds; and a shared iodothyronine transporter that interacts with T₃, T₄, nitrendipine and diazepam.

Introduction

Although transfer of thyroxine (T₄) from maternal to foetal circulation in the perfused placenta is minimal (Mortimer et al. 1996), T₄ has been found in cord blood of infants unable to synthesise their own hormone (Vulsma et al. 1989). While this provides convincing evidence for the passage of maternal thyroid hormone across the placenta, at least to a foetus lacking thyroid hormone, the mechanisms mediating this transfer are not well understood.

We have previously described membrane transporters for thyroid hormones in human trophoblast and the human choriocarcinoma cell line, JAR. Transport of tri-iodothyronine (T₃), T₄ and reverse tri-iodothyronine (rT₃) into JAR cells and export of T₃ from the cells occurs by saturable processes. Efflux of T₄ and rT₃, on the other hand, occurs by passive diffusion (Mitchell et al. 1992, 1995, 1999a, b). Membrane transport of thyroid hormone has now been characterised in a wide range of cells, with reported differences in thyroid hormone uptake and efflux kinetics between and within cell types. In hepatocytes, for example, uptake of T₃ is energy dependent and T₃ efflux occurs by passive diffusion (Hennemann et al. 1984). Human and rat lymphocytes and erythrocytes, rat synaptosomes and cardiac myocytes (Kragie 1994 (review), Everts et al. 1996) actively transport T₃ while T₄ is probably taken up by simple diffusion. Separate transport mechanisms for T₃, T₄ and rT₃ have been described in human liver (Kaptein 1997) and separate membrane transporters mediating uptake of T₃ and T₄ are also suggested for rat hepatocytes (Krenning et al. 1981). These findings taken together suggest that the processes involved in uptake and efflux of thyroid hormones may be relatively specific for individual thyroid hormones and may be different depending on tissue type.

Our previous studies have shown that thyroid hormones are taken up into JAR cells by at least two transporters with differing affinities (Mitchell et al. 1999a, b). The aim of this study was to determine if T₃ and T₄ were transported by a distinct or shared mechanism in order to further characterise iodothyronine transport in JAR cells.

Materials and Methods

Reagents

Materials were purchased from the following sources: 125I-T₃ (3300 µCi/µg) and 125I-T₄ (1250 µCi/µg) from...
Du Pont Company, Wilmington, DE, USA; foetal calf serum from Commonwealth Serum Laboratories, Melbourne, Victoria, Australia; bicinchoninic acid Protein Reagent from Pierce Chemicals, Rockford, IL, USA; and six-well tissue culture plates from Costar, Cambridge, MA, USA. All other chemicals and cell culture media were from Sigma Chemicals, St Louis, MO, USA. Nitrendipine was a gift from Bayer Pharmaceutical Division, West Haven, CO, USA.

Cell culture
The JAR cell line was purchased from American Type Culture Collection, Rockville, MD, USA. Cells were maintained in continuous culture at 37 °C in humidified atmosphere of 95% air and 5% CO2. Growth medium was RPMI 1640 supplemented with 10% (v/v) foetal calf serum. Cells were subcultured three times a week. For uptake experiments, 3 × 105 cells were plated into each well of the six-well tissue culture plates. Medium was changed 24 h after plating, with cells cultured for 2–3 days. At the end of the uptake experiments, viability of the cells was assessed by the trypan blue exclusion test and was always over 90%.

Uptake studies
The procedure for uptake studies and the determination of the kinetic parameters (Michaelis constant, \(K_m \)), and the maximum velocity, \(V_{\text{max}} \) of the initial cellular uptake of \(^{125}\text{I}-\text{T}_3 \) and \(^{125}\text{I}-\text{T}_4 \) were as previously described (Mitchell et al. 1992, 1995). In brief, prior to all uptake experiments cells were incubated for 1 h in Hanks’ balanced salts solution (HBSS). All incubations were carried out at 37 °C. To terminate uptake, incubation medium was aspirated; cells were washed twice in ice-cold HBSS and immediately lysed in 1 M NaOH. Cell-associated radioactivity was determined by counting the radioactivity in a Packard 1900-C. To terminate uptake, incubation medium was aspirated, cells were washed twice in ice-cold HBSS and immediately lysed in 1 M NaOH. Cell-associated radioactivity was determined by counting the radioactivity in a Packard 1900C counter with a counting efficiency of 84%. \(^{125}\text{I} \)-labelled thyroid hormone taken up was expressed as femtomoles per minute per milligram of cellular protein (fmol/min per mg protein). The specificity of the uptake process was examined by incubating cells for 30 min in the presence of 30 pM \(^{125}\text{I}-\text{T}_3 \) or 50 pM \(^{125}\text{I}-\text{T}_4 \), with or without 10 µM excess of unlabelled thyroid hormones, 10 mM unlabelled amino acids, tryptophan, phenylalanine, leucine, glycine, alanine, glutamine, \(\alpha-(methylamino)-isobutyric \) acid (Me-AIB) and 2-amino-2-norbornane-carboxylic acid (BCH). The effect of various compounds on the initial rate of specific uptake of thyroid hormone was determined by incubating cells for 2 min in the presence of 30 pM \(^{125}\text{I}-\text{T}_3 \) or 50 pM \(^{125}\text{I}-\text{T}_4 \), with or without 10 µM unlabelled thyroid hormone and with or without 100 µM nitrendipine, nifedipine, verapamil, meclofenamic acid mefenamic acid, diazepam, phentoyin, indocyanine green, procion red, reactive red, reactive blue, acid blue and 50 µM iopanoic acid. Drugs and dyes were dissolved in ethanol and diluted in HBSS. The final concentration of ethanol did not exceed 0·4%, which had no effect on cellular uptake of \(\text{T}_3 \) or \(\text{T}_4 \). Results from three to seven determinations were pooled. Further characterisation of the transport system was carried out using inhibitor studies to determine the kinetic parameters of inhibition of thyroid hormone uptake by various compounds. The cells were incubated for 2 min in the presence of 30 pM \(^{125}\text{I}-\text{T}_3 \) or 50 pM \(^{125}\text{I}-\text{T}_4 \) and unlabelled \(\text{T}_3 \) and \(\text{T}_4 \) (0–10 µM) with or without 100 µM final concentration of unlabelled nitrendipine and 80–100 µM final concentration of diazepam. Results from 4–8 determinations were pooled and data fitted to the Michaelis–Menten equation using a non-linear curve-fitting program (GraphPad Prism, GraphPad, San Diego, CA, USA).

We sought evidence of metabolism of \(^{125}\text{I}-\text{T}_3 \) and \(^{125}\text{I}-\text{T}_4 \) by duplicate cultures of JAR cells during uptake experiments by analysing radioactivity present in the cells and in the medium after incubation with the tracers for 30 min at 37 °C. As in our previous studies, we found evidence of only minimal metabolism of tracers by the cells.

Determination of the cellular protein content
The protein content of cell lysates was determined with the bicinchoninic acid reagent (Pierce Chemicals) which is a modification of the Biuret reaction using BSA as a standard.

Statistical analysis
Statistical analysis was performed by Student’s \(t \)-test and one-way ANOVA followed by multiple comparison of means against a single control (Bonferonni’s \(t \)-test) using the statistical software package SigmaStat (Jandel Scientific, San Rafael, CA, USA). Results were expressed as means and standard errors of the mean, and \(n \) is the number of independent determinations, each in triplicate. A probability of <0·05 was regarded as significant.

Results
Uptake of \(^{125}\text{I}-\text{T}_3 \) and \(^{125}\text{I}-\text{T}_4 \) in JAR cells was inhibited by the L-system amino acids tryptophan, phenylalanine, leucine and the synthetic amino acid analogue 2-amino-2-norbornane-carboxylic acid (BCH). Tryptophan was the most effective inhibitor, reducing saturable \(^{125}\text{I}-\text{T}_3 \) and \(^{125}\text{I}-\text{T}_4 \) uptake by 85·5% (\(n = 3 \)) and 63·6% (\(n = 4 \)) respectively. The effects of L-system amino acids on thyroid hormone uptake are shown in Fig. 1. Amino acids transported by other amino acid carriers had no significant effect on the uptake of \(\text{T}_3 \) and \(\text{T}_4 \) (results not shown).
Saturable T₃ but not saturable T₄ uptake (Fig. 2) was inhibited by a wide range of aromatic compounds, suggesting that there may be different transporters for these two thyroid hormones in JAR cells.

Further evidence of distinct T₃ and T₄ transporters was obtained by studies with nitrendipine and diazepam. The kinetic parameters of initial specific uptake of T₃ and T₄ (Michaelis constant, K_m, and maximum velocity, V_{max}) were determined with and without addition of these drugs. Addition of 100 μM nitrendipine increased K_m for T₃ uptake from a control value of 294 ± 35·3 nM to 757 ± 152·2 nM ($n=4$) (Fig. 3A). The effects of nitrendipine on T₄ uptake were however quite different,
with a reduction in K_m from 509 ± 182 nM to 293 ± 96·8 nM ($n=6$) (Fig. 3B). Similarly, 80 µM diazepam increased the K_m for T3 uptake from 192 ± 20·7 nM to 936 ± 176·3 nM ($n=5$), whereas the K_m for T4 uptake in the presence of 100 µM diazepam decreased from 660 ± 228·7 nM to 483 ± 97·8 nM ($n=8$) (Fig. 4).

Discussion

Studies of cell membrane transport of thyroid hormones and their analogues have shown differences in mechanisms of uptake and efflux for T3 and T4 in some cell types but not others. The present study confirms our previous findings of at least two types of transporters for thyroid hormones in JAR cells (Mitchell et al. 1999b). Uptake of T3 and T4 in JAR cells was inhibited by the L-system amino acids tryptophan, phenylalanine, leucine and the synthetic amino acid analogue BCH. The magnitude of the inhibition of T3 uptake by these agents compared with their effects on T4 uptake suggests however a subtle difference in the uptake mechanisms for these two iodothyronines.
Thyroid hormone uptake in many cells, including JAR cells (Mitchell et al. 1994, 1995, Prasad et al. 1994), is inhibited by high (10 mM) concentrations of aromatic and other L-system amino acids. The spectrum of inhibition appears to relate to amino acid structure rather than biological considerations (Christensen 1989). A range of small molecules with multiple aromatic rings inhibits thyroid hormone uptake in many cells at much lower concentrations (1–100 µM) (Krenning et al. 1981, Topliss et al. 1989, 1993). It is possible that aromatic rings or similar planar functional groups in these inhibitory compounds are required to inhibit thyroid hormone uptake (Chalmers et al. 1993).

We had previously reported a preliminary account of the affects of nitrendipine on thyroid hormone uptake in JAR cells (Mitchell et al. 1999b). A larger range of structurally similar but pharmacologically diverse compounds (verapamil, phenytoin, mefenamic acid, meclofenamic acid, nifedipine, 1-iodoacetic acid and diazepam) were tested for effects on thyroid hormone uptake. The spectrum of inhibition for high (10 mM) concentrations of aromatic and other L-system amino acids. The spectrum of inhibition for high (10 mM) concentrations of aromatic and other L-system amino acids appears to relate to amino acid structure rather than biological considerations (Christensen 1989). A range of small molecules with multiple aromatic rings inhibits thyroid hormone uptake in many cells at much lower concentrations (1–100 µM) (Krenning et al. 1981, Topliss et al. 1989, 1993). It is possible that aromatic rings or similar planar functional groups in these inhibitory compounds are required to inhibit thyroid hormone uptake (Chalmers et al. 1993).

Irrespective, however, of the interpretation of the increased affinity for T4 in the presence of inhibitors, the data very clearly indicate that T3 and T4 are transported into JAR cells by different carriers.

Acknowledgements

These studies were funded in part by the Endocrinology Research Unit Trust Funds, Royal Brisbane Hospital, Brisbane, Queensland 4029, Australia.

References

Mitchell AM, Manley SW & Mortimer RH 1992 Membrane transport of thyroid hormone in the human choriocarcinoma cell line, JAR. *Molecular and Cellular Endocrinology* 87 139–145.

Mitchell AM, Manley SW, Rowan KA & Mortimer RH 1999a Uptake of reverse T3 in the human choriocarcinoma cell line, JAR. *Placenta* 20 65–70.

Mitchell AM, Powell KA, Manley SW & Mortimer RH 1999b Comparison of mechanisms mediating uptake and efflux of thyroid hormones in the human choriocarcinoma cell line, JAR. *Journal of Endocrinology* 161 107–113.

Received 3 April 2000
Accepted 8 August 2000