174TH MEETING
OF THE
SOCIETY FOR ENDOCRINOLOGY

19-21 November 1986

The opinions and views within are those of the submitting authors and have not been verified by the Society, which accepts no scientific responsibility for the statements made. It is not possible to guarantee that the abstracts printed in this Supplement will be presented at the Meeting.

© 1986 Journal of Endocrinology Ltd
Two years ago the then Treasurer, David London and I visited a Miss Marjorie A. Robinson in Basingstoke. She had previously made several small donations to our Society and hinted that she might in future wish to make a larger one. It transpired that she had suffered from Cushing’s disease and had undergone both bilateral adrenalectomy and pituitary surgery. We spent an enjoyable few hours with her at her home describing the aims and aspirations of our Society. Last year Miss Robinson died of her pituitary tumour and left her entire estate (£115,000) to us with the express wish that the money be used to promote research into disorders of the pituitary adrenal axis. As you know we balloted the membership to enable the monies which were left to the Society to be transferred to the Journal of Endocrinology Ltd to take advantage of its charitable status. The interest from the monies will be used to support research fellowships. In accordance with the wishes of her executors the Awarding Committee must contain one person who is not an officer or member of the Committee. I am delighted to report that Professor R. Hoffenberg has agreed to serve in this capacity. This has been a unique occasion for the Society and enables us to support dedicated fellowships for the first time.

Lesley H Rees (Chairman)

In memory of Miss Robinson, David C. Anderson will give a lecture entitled "The Glucocorticoid Enigma".

Born earlier than many suspect, David Anderson decided to become a doctor at the age of 4. After Rugby School he studied medicine at the University of St Andrews and Dundee from whence he qualified with commendation in 1963. House jobs were followed by an initial foray into renal and metabolic medicine, and in 1967 he went as Medical Registrar to the Hammersmith Hospital, where he began his endocrine career first with Cuthbert Cope and then with Russell Fraser. In 1971 he moved to St Bartholomew’s Hospital as Lecturer, to join an otherwise distinguished team! 1973-4 was spent in San Yen’s department in San Diego, supported by a Goldsmith’s Travelling Research Fellowship. In 1975 he went to the University of Manchester where he has worked since, first as Senior Lecturer in Medicine and Consultant Physician at the Royal Infirmary and since 1977 at Hope Hospital. He was made Reader in 1984 and was recently given a personal Chair in Endocrinology. He has served as Secretary of the Endocrine Section of the Royal Society of Medicine (1976-80), and as Committee Member of the Society for Endocrinology (1981-84). Since 1981 he has been joint Editor of Clinical Endocrinology. He has been a strong advocate of closer links between clinical and basic endocrinology in the U.K. He obtained his MRCP (Edinburgh and London) in 1966, MSc (London, with distinction) in 1972, MD (Dundee with commendation) in 1974, FRCP in 1979 and MRCPath in 1980. His clinical and research interests have been wide and despite his best intentions are likely to remain so. He worked first with development and clinical applications of CPB assays of 17ß-hydroxylated androgens and sex hormone binding globulin. In California he studied the role of oestrogens and the adrenarche and helped to develop a practical multiple fractionation and RIA procedure for closely related steroids. He has been interested in androgen secretion in the adrenarche and in congenital adrenal hyperplasia, and its minor variants. He has long had a clinical research interest in hirsutism and in polycystic ovaries, and more recently in the endocrine basis of unexplained female infertility. At Hope Hospital, supported by many tolerant and capable colleagues and friends, he has led clinical research and treatment programmes in reproductive medicine, diabetes and bone disease, notably Paget’s Disease. His interest in steroids and bone led him into studies of adrenal steroid intermediates and osteoporosis, to the action of vitamin D on bone, and to a basic interest in the mechanisms of interaction of osteoblasts and osteoclasts and the effect of hormones upon them. On a good day he is a plain-speaking lateral thinker (and on a bad one a plain-thinking lateral speaker) and he believes that some of his many controversial ideas must by chance alone turn out to be correct! He has a long-suffering wife and three sons, and his extracurricular interests include music and oriental art.
A silver plate was awarded to Dr Derek Bangham by the Society for Endocrinology for his distinguished contribution to British endocrinology.

Derek Bangham did his preclinical training at King’s College London during the war and clinical training at University College Hospital. After graduating MBBS in 1948 he did 3 years assorted clinical work, half of it at UCH, after 6 months as a medical officer on the Gold Coast. In 1952 he joined the Division of Parasitology of the Medical Research Council (MRC) at the National Institute for Medical Research (NIMR), and moved to the Division of Biological Standards (DBS) in 1957.

In 1961 he became head of the DBS at NIMR, and since 1973 head of the Hormones Division at the National Institute for Biological Standards and Control (NIBSC) when that Institute developed from the original DBS. His activities for the last 25 years have thus been identified with the work of these two Divisions. The DBS grew out of the original responsibility of the NIMR, instigated by Henry Dale in 1925, to set up international standards (reference materials) for insulin and other medically important "pharmacologically active" substances that were assayed by comparative methods. As one (the larger one) of the two original International Centres for International Biological Standards, the Division has set up every one of the hormone International Standards since the first in 1925.

The properties essential for a standard are that each sample of it is identical to another and that it is very stable. There are many substances of vast interest in medical research that needed standards, but because 25 years ago they were not officially licensed (for sale for clinical use) little effort was made to facilitate their assay and standardization. So with the agreement of Council, in 1964, the DBS started setting up "MRC Research Standards". Among the earliest were Substance P, porcine calcitonin, human erythropoietin and chick interferon. "Research standards" for several human peptide and glycoprotein hormones were later set up by the Division and many scarce purified antigens and antisera were also supplied and distributed.

During this time the DBS also set up and introduced standards for many other substances including many antibiotics, immunoglobulins, autoimmune antibodies, rheumatoid factor, clotting factors, plasmin, thrombin and blood typing sera.

Hormones present examples of many difficult standardization problems: of unknown molecular identity and structure, heterogeneity, instability, scarcity, high cost, difficulty in handling, and assay methods that are imprecise, or of uncertain specificity and which give differing results. Nevertheless each year about 2500 ampoules of hormone standards are sent to about a thousand laboratories worldwide.

The Expert Committee on Biological Standardization (ECBS) takes the formal decisions and responsibility for establishing standards; it is the World Health Organization’s first and most regular committee, which Derek Bangham has attended for 22 years. He has also provided scientific advice to the Licensing Authority on the production of safe hormone products for clinical use. For polypeptide and glycoprotein hormones this involves responsibility for release of each batch of hormones such as insulin, growth hormone etc.

His other responsibilities have included: Chairman of the Bioassays Committee of the British Pharmacopoeia Commission, from 1963-73, and of its Hormone Committee for 20 years. He also spent 18 years on the European Pharmacopoeia Committee on hormones, was Secretary of the MRC Committee to advise on toxicity testing of new drugs, set up in 1961 when the teratological effects of Thalidomide had been recognized and served on the Biological Subcommittee of the Committee on Safety of Medicines since its inception in 1971.

Most of the work on standards has been done in collaboration with scientists in research and industry, worldwide. Tribute is given to them and to past colleagues in the DBS at NIMR, and the Division of Hormones at NIBSC, most especially to Jim Lightbown, Mary Cotes, Michael Stack-Dunne, John Parsons, Christopher Robinson, Derek Calam, Patrick Storring, Joan Zanelli, Rose Hartley, Dennis Schulster, Adrian Bristow and Stephen Poole; and to Marjorie Mussett, Rose Gaines-Das and Patrick Campbell.
Anthony P F Flint was born on 31st August 1943 in Newport, South Wales. He obtained an Honours BSc in Biochemistry and Microbiology at St Andrews University (Queen’s College, Dundee) in 1966, and a PhD in the Department of Biochemistry, Bristol University, 1969. After three years postdoctoral fellowship with Professor David T Armstrong in the Department of Physiology, University of Western Ontario, London, Ontario, Canada, he returned to the U.K. to join the Department of Obstetrics and Gynaecology, Welsh School of Medicine, Cardiff, to study the endocrine control of parturition with Professor A C Turnbull and the late Dr Anne B M Anderson in 1972. In 1977 he was appointed to a post at the AFRC Institute of Animal Physiology and Genetics Research, Babraham, Cambridge, where he is now Senior Principal Scientific Officer and Acting Head of the Department of Physiology.

Tony Flint has made substantial contributions to our knowledge of the control of ovarian function and to the mechanism of the onset of parturition and the establishment of pregnancy in a variety of mammals. He is a scientist who thrives on the formulation and testing of a new hypothesis, and this has resulted in an impressive number of original contributions to endocrinology, many of which will be found in the Journal of Endocrinology.

His early work with David Armstrong on cholesterol metabolism in the rat ovary led to the first demonstration that cholesterol esters stored in lipid droplets inside the secretory cells were in a state of rapid turnover. From experiments on sterol and steroid metabolism Tony Flint developed a keen interest in the control of steroid endocrine function in the ovine and human placenta, and when in 1973 the Cardiff group moved to the Nuffield Department of Obstetrics and Gynaecology, University of Oxford, he extended his work into understanding the events that control labour. These studies formed the basis of subsequent papers on the endocrine function of the placenta and its regulation by fetal cortisol secretion, and on the ontogeny and control of placental glucocorticoid receptors. While working on uterine prostaglandin production at parturition, Tony Flint and his colleagues identified oxytocin as a potent stimulator of prostaglandin F2α (PGF2α) secretion, which led to clinical studies on the release of these compounds and their physiological significance in late gestation. This work led to experiments on the control of uterine PGF2α secretion by oxytocin produced by the corpus luteum which have provided new and exciting insights into the role of this peptide in the oestrous cycle in ruminants.

Tony Flint currently leads a very active group at Babraham, and is in much demand as a lecturer and contributor to scientific meetings in the U.K. and abroad. He was appointed a Fellow of the Institute of Biology, London, in 1982 and awarded a DSc from the University of Bristol in 1984. He is a Member of the Board of Scientific Editors of the Journal of Endocrinology, a Member of the Council of Management and Executive Committee of the Journal of Reproduction and Fertility, and Business Secretary of the Society for the Study of Fertility. He is a Visiting Lecturer in Molecular Biology at the School of Agriculture, University of Nottingham, and a Member of the Steering Committee of the Task Force on Plants for Fertility Regulation, World Health Organization, Geneva.
Rudi Froesch was born in Zurich in 1929. In 1954 he obtained the MD of the University of Zurich for his thesis on the plasma cortisol response to hypoglycaemia.

In that year, Rudi went to Harvard as a research fellow at the Peter Bent Brigham Hospital which then contained the most exciting multiendocrine system in the world. Its growth and development were constantly stimulated by George Thorn and among its many actively secreting groups was a large Swiss islet clustered around Albert Renold, later to be Professor of Biochemistry and Rector Magnificus of the University of Geneva. In that environment, everyone’s intellectual receptors were rapidly induced and intellectual processes increased manifold. Thus Rudi quickly recognized that his bioassay measurements of plasma insulin revealed a fraction whose activity could not be suppressed by anti-insulin serum. He recognized the validity of this observation and took the problem back with him to Zurich in 1957 to Professor Labhart’s department where he continued to pursue it. The outcome of these studies was the characterization of this fraction as insulin-like growth factors and this has contributed greatly to the acceptance and understanding of the multiple roles of hormones in the organism’s growth, development and metabolic processes.

Rudi Froesch’s career also illustrates that it is perfectly possible, though apparently not so readily in Great Britain, to be a successful basic scientist as well as a clinician. In addition to his work on growth factors he described the clinical syndrome of hereditary fructose intolerance, identified its metabolic defect and clarified the metabolic pathways of fructose metabolism; he has contributed to the understanding of the pathogenesis of exocrine tumour hypoglycaemia, and the early bioassay of insulin using the rat epididymal fat pad led to further studies on adipose tissue metabolism. He also, of course, continues to take care of patients burdened with the day-to-day problems of diabetes and other endocrine diseases. His present position as Associate Professor of Pathophysiology in the Department of Medicine and Head of Diabetology and Endocrinology underscores this blending of basic science with clinical medicine.

It is not surprising that he has already received notable distinctions such as the Minkowski Prize of the European Association for the Study of Diabetes, the Paul Langerhans medal of the German Diabetes Society and the Otto Naegeli Prize. It is fitting that he should now be invited to give the Society for Endocrinology European Medal Lecture.